Loading…

Social Distance Characterization by means of Pedestrian Simulation

In the present work, we study how the number of simulated clients (occupancy) affects the social distance in an ideal supermarket. For this, we account for realistic typical dimensions and process time (picking products and checkout). From the simulated trajectories, we measure events of social dist...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-09
Main Authors: Parisi, Daniel R, Patterson, Germán A, Pagni, Lucio, Osimani, Agustina, Bacigalupo, Tomas, Godfrid, Juan, Bergagna, Federico M, Manuel Rodriguez Brizi, Momesso, Pedro, Gomez, Fermin L, Lozano, Jimena, Juan Martin Baader, Ribas, Ignacio, Astiz Meyer, Facundo P, Miguel Di Luca, Barrera, Nicolás E, Ezequiel M Keimel Álvarez, Maite M Herran Oyhanarte, Pingarilho, Pedro R, Zuberbuhler, Ximena, Gorostiaga, Felipe
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Parisi, Daniel R
Patterson, Germán A
Pagni, Lucio
Osimani, Agustina
Bacigalupo, Tomas
Godfrid, Juan
Bergagna, Federico M
Manuel Rodriguez Brizi
Momesso, Pedro
Gomez, Fermin L
Lozano, Jimena
Juan Martin Baader
Ribas, Ignacio
Astiz Meyer, Facundo P
Miguel Di Luca
Barrera, Nicolás E
Ezequiel M Keimel Álvarez
Maite M Herran Oyhanarte
Pingarilho, Pedro R
Zuberbuhler, Ximena
Gorostiaga, Felipe
description In the present work, we study how the number of simulated clients (occupancy) affects the social distance in an ideal supermarket. For this, we account for realistic typical dimensions and process time (picking products and checkout). From the simulated trajectories, we measure events of social distance less than 2 m and its duration. Between other observables, we define a social distance coefficient that informs how many events (of a given duration) suffer each agent in the system. These kinds of outputs could be useful for building procedures and protocols in the context of a pandemic allowing to keep low health risks while setting a maximum operating capacity.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2441394587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441394587</sourcerecordid><originalsourceid>FETCH-proquest_journals_24413945873</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLrS52LpaFUeh7uVYU0xJE81l0Ke3iA_g9A__NyMJZazIKk7pgqTeD3me001JhWAJ2TW2U6hhr3xA00mo7-iwC9KpNwZlDVxfMEo0HmwPZ3mTPjiFBho1Rv0VKzLvUXuZ_rok6-PhUp-yh7PPOPl2sNGZabWU84JtuahK9p_6AM0pOg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441394587</pqid></control><display><type>article</type><title>Social Distance Characterization by means of Pedestrian Simulation</title><source>Publicly Available Content Database</source><creator>Parisi, Daniel R ; Patterson, Germán A ; Pagni, Lucio ; Osimani, Agustina ; Bacigalupo, Tomas ; Godfrid, Juan ; Bergagna, Federico M ; Manuel Rodriguez Brizi ; Momesso, Pedro ; Gomez, Fermin L ; Lozano, Jimena ; Juan Martin Baader ; Ribas, Ignacio ; Astiz Meyer, Facundo P ; Miguel Di Luca ; Barrera, Nicolás E ; Ezequiel M Keimel Álvarez ; Maite M Herran Oyhanarte ; Pingarilho, Pedro R ; Zuberbuhler, Ximena ; Gorostiaga, Felipe</creator><creatorcontrib>Parisi, Daniel R ; Patterson, Germán A ; Pagni, Lucio ; Osimani, Agustina ; Bacigalupo, Tomas ; Godfrid, Juan ; Bergagna, Federico M ; Manuel Rodriguez Brizi ; Momesso, Pedro ; Gomez, Fermin L ; Lozano, Jimena ; Juan Martin Baader ; Ribas, Ignacio ; Astiz Meyer, Facundo P ; Miguel Di Luca ; Barrera, Nicolás E ; Ezequiel M Keimel Álvarez ; Maite M Herran Oyhanarte ; Pingarilho, Pedro R ; Zuberbuhler, Ximena ; Gorostiaga, Felipe</creatorcontrib><description>In the present work, we study how the number of simulated clients (occupancy) affects the social distance in an ideal supermarket. For this, we account for realistic typical dimensions and process time (picking products and checkout). From the simulated trajectories, we measure events of social distance less than 2 m and its duration. Between other observables, we define a social distance coefficient that informs how many events (of a given duration) suffer each agent in the system. These kinds of outputs could be useful for building procedures and protocols in the context of a pandemic allowing to keep low health risks while setting a maximum operating capacity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Checkout ; Occupancy ; Simulation ; Trajectory measurement</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2441394587?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Parisi, Daniel R</creatorcontrib><creatorcontrib>Patterson, Germán A</creatorcontrib><creatorcontrib>Pagni, Lucio</creatorcontrib><creatorcontrib>Osimani, Agustina</creatorcontrib><creatorcontrib>Bacigalupo, Tomas</creatorcontrib><creatorcontrib>Godfrid, Juan</creatorcontrib><creatorcontrib>Bergagna, Federico M</creatorcontrib><creatorcontrib>Manuel Rodriguez Brizi</creatorcontrib><creatorcontrib>Momesso, Pedro</creatorcontrib><creatorcontrib>Gomez, Fermin L</creatorcontrib><creatorcontrib>Lozano, Jimena</creatorcontrib><creatorcontrib>Juan Martin Baader</creatorcontrib><creatorcontrib>Ribas, Ignacio</creatorcontrib><creatorcontrib>Astiz Meyer, Facundo P</creatorcontrib><creatorcontrib>Miguel Di Luca</creatorcontrib><creatorcontrib>Barrera, Nicolás E</creatorcontrib><creatorcontrib>Ezequiel M Keimel Álvarez</creatorcontrib><creatorcontrib>Maite M Herran Oyhanarte</creatorcontrib><creatorcontrib>Pingarilho, Pedro R</creatorcontrib><creatorcontrib>Zuberbuhler, Ximena</creatorcontrib><creatorcontrib>Gorostiaga, Felipe</creatorcontrib><title>Social Distance Characterization by means of Pedestrian Simulation</title><title>arXiv.org</title><description>In the present work, we study how the number of simulated clients (occupancy) affects the social distance in an ideal supermarket. For this, we account for realistic typical dimensions and process time (picking products and checkout). From the simulated trajectories, we measure events of social distance less than 2 m and its duration. Between other observables, we define a social distance coefficient that informs how many events (of a given duration) suffer each agent in the system. These kinds of outputs could be useful for building procedures and protocols in the context of a pandemic allowing to keep low health risks while setting a maximum operating capacity.</description><subject>Checkout</subject><subject>Occupancy</subject><subject>Simulation</subject><subject>Trajectory measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLrS52LpaFUeh7uVYU0xJE81l0Ke3iA_g9A__NyMJZazIKk7pgqTeD3me001JhWAJ2TW2U6hhr3xA00mo7-iwC9KpNwZlDVxfMEo0HmwPZ3mTPjiFBho1Rv0VKzLvUXuZ_rok6-PhUp-yh7PPOPl2sNGZabWU84JtuahK9p_6AM0pOg4</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Parisi, Daniel R</creator><creator>Patterson, Germán A</creator><creator>Pagni, Lucio</creator><creator>Osimani, Agustina</creator><creator>Bacigalupo, Tomas</creator><creator>Godfrid, Juan</creator><creator>Bergagna, Federico M</creator><creator>Manuel Rodriguez Brizi</creator><creator>Momesso, Pedro</creator><creator>Gomez, Fermin L</creator><creator>Lozano, Jimena</creator><creator>Juan Martin Baader</creator><creator>Ribas, Ignacio</creator><creator>Astiz Meyer, Facundo P</creator><creator>Miguel Di Luca</creator><creator>Barrera, Nicolás E</creator><creator>Ezequiel M Keimel Álvarez</creator><creator>Maite M Herran Oyhanarte</creator><creator>Pingarilho, Pedro R</creator><creator>Zuberbuhler, Ximena</creator><creator>Gorostiaga, Felipe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200908</creationdate><title>Social Distance Characterization by means of Pedestrian Simulation</title><author>Parisi, Daniel R ; Patterson, Germán A ; Pagni, Lucio ; Osimani, Agustina ; Bacigalupo, Tomas ; Godfrid, Juan ; Bergagna, Federico M ; Manuel Rodriguez Brizi ; Momesso, Pedro ; Gomez, Fermin L ; Lozano, Jimena ; Juan Martin Baader ; Ribas, Ignacio ; Astiz Meyer, Facundo P ; Miguel Di Luca ; Barrera, Nicolás E ; Ezequiel M Keimel Álvarez ; Maite M Herran Oyhanarte ; Pingarilho, Pedro R ; Zuberbuhler, Ximena ; Gorostiaga, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24413945873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Checkout</topic><topic>Occupancy</topic><topic>Simulation</topic><topic>Trajectory measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Parisi, Daniel R</creatorcontrib><creatorcontrib>Patterson, Germán A</creatorcontrib><creatorcontrib>Pagni, Lucio</creatorcontrib><creatorcontrib>Osimani, Agustina</creatorcontrib><creatorcontrib>Bacigalupo, Tomas</creatorcontrib><creatorcontrib>Godfrid, Juan</creatorcontrib><creatorcontrib>Bergagna, Federico M</creatorcontrib><creatorcontrib>Manuel Rodriguez Brizi</creatorcontrib><creatorcontrib>Momesso, Pedro</creatorcontrib><creatorcontrib>Gomez, Fermin L</creatorcontrib><creatorcontrib>Lozano, Jimena</creatorcontrib><creatorcontrib>Juan Martin Baader</creatorcontrib><creatorcontrib>Ribas, Ignacio</creatorcontrib><creatorcontrib>Astiz Meyer, Facundo P</creatorcontrib><creatorcontrib>Miguel Di Luca</creatorcontrib><creatorcontrib>Barrera, Nicolás E</creatorcontrib><creatorcontrib>Ezequiel M Keimel Álvarez</creatorcontrib><creatorcontrib>Maite M Herran Oyhanarte</creatorcontrib><creatorcontrib>Pingarilho, Pedro R</creatorcontrib><creatorcontrib>Zuberbuhler, Ximena</creatorcontrib><creatorcontrib>Gorostiaga, Felipe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisi, Daniel R</au><au>Patterson, Germán A</au><au>Pagni, Lucio</au><au>Osimani, Agustina</au><au>Bacigalupo, Tomas</au><au>Godfrid, Juan</au><au>Bergagna, Federico M</au><au>Manuel Rodriguez Brizi</au><au>Momesso, Pedro</au><au>Gomez, Fermin L</au><au>Lozano, Jimena</au><au>Juan Martin Baader</au><au>Ribas, Ignacio</au><au>Astiz Meyer, Facundo P</au><au>Miguel Di Luca</au><au>Barrera, Nicolás E</au><au>Ezequiel M Keimel Álvarez</au><au>Maite M Herran Oyhanarte</au><au>Pingarilho, Pedro R</au><au>Zuberbuhler, Ximena</au><au>Gorostiaga, Felipe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Social Distance Characterization by means of Pedestrian Simulation</atitle><jtitle>arXiv.org</jtitle><date>2020-09-08</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In the present work, we study how the number of simulated clients (occupancy) affects the social distance in an ideal supermarket. For this, we account for realistic typical dimensions and process time (picking products and checkout). From the simulated trajectories, we measure events of social distance less than 2 m and its duration. Between other observables, we define a social distance coefficient that informs how many events (of a given duration) suffer each agent in the system. These kinds of outputs could be useful for building procedures and protocols in the context of a pandemic allowing to keep low health risks while setting a maximum operating capacity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2441394587
source Publicly Available Content Database
subjects Checkout
Occupancy
Simulation
Trajectory measurement
title Social Distance Characterization by means of Pedestrian Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Social%20Distance%20Characterization%20by%20means%20of%20Pedestrian%20Simulation&rft.jtitle=arXiv.org&rft.au=Parisi,%20Daniel%20R&rft.date=2020-09-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2441394587%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24413945873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441394587&rft_id=info:pmid/&rfr_iscdi=true