Loading…

Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery

Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2020-07, Vol.203, p.117801, Article 117801
Main Authors: Braimakis, Konstantinos, Mikelis, Angelos, Charalampidis, Antonios, Karellas, Sotirios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123
cites cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123
container_end_page
container_issue
container_start_page 117801
container_title Energy (Oxford)
container_volume 203
creator Braimakis, Konstantinos
Mikelis, Angelos
Charalampidis, Antonios
Karellas, Sotirios
description Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.
doi_str_mv 10.1016/j.energy.2020.117801
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441576318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220309087</els_id><sourcerecordid>2441576318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA89Zks3-SiyBFq1CoiOIxZLOTmrXd1CRr7bc3sp49Dcy894b3Q-iSkhkltLruZtCDXx9mOcnTitac0CM0obxmWVXz8hhNCKtIVhZFforOQugIISUXYoLi3XdyQrQa78Ab57eq14CdwfNVjlXf4mETvco2bo8Xb0_Yg_F2DV71EW_tdxw8BKwC3jv_Yfs1NpvBtgHbHq-e5zjl4b0KEfA7qJjM2n2BP5yjE6M2AS7-5hS93t-9zB-y5WrxOL9dZpqxImZlxSkzivLKNI0ohWhr3qiG67pthM6N0jVRbWlEI9KtUo1guq0NM0JzIDRnU3Q15u68-xwgRNm5wffppcyLgpZ1xShPqmJUae9CSAXlztut8gdJifzlKzs58pW_fOXIN9luRhukBl8WvAzaQoLX2tQzytbZ_wN-AMzThyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441576318</pqid></control><display><type>article</type><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><source>ScienceDirect Freedom Collection</source><creator>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</creator><creatorcontrib>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</creatorcontrib><description>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.117801</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Binary mixtures ; Carbon dioxide ; Climate change ; Critical temperature ; Environmental regulations ; Evaporation ; Exergetic efficiency ; Exergy ; Global optimization ; Global warming ; Heat ; Heat recovery ; Low GWP ; Mixture ; ORC ; Pentane ; Propylene ; Refrigerants ; Temperature gradients ; Waste heat recovery ; Working fluids ; Zeotropic ; Zeotropic mixtures</subject><ispartof>Energy (Oxford), 2020-07, Vol.203, p.117801, Article 117801</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</citedby><cites>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Braimakis, Konstantinos</creatorcontrib><creatorcontrib>Mikelis, Angelos</creatorcontrib><creatorcontrib>Charalampidis, Antonios</creatorcontrib><creatorcontrib>Karellas, Sotirios</creatorcontrib><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><title>Energy (Oxford)</title><description>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</description><subject>Binary mixtures</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Critical temperature</subject><subject>Environmental regulations</subject><subject>Evaporation</subject><subject>Exergetic efficiency</subject><subject>Exergy</subject><subject>Global optimization</subject><subject>Global warming</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Low GWP</subject><subject>Mixture</subject><subject>ORC</subject><subject>Pentane</subject><subject>Propylene</subject><subject>Refrigerants</subject><subject>Temperature gradients</subject><subject>Waste heat recovery</subject><subject>Working fluids</subject><subject>Zeotropic</subject><subject>Zeotropic mixtures</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA89Zks3-SiyBFq1CoiOIxZLOTmrXd1CRr7bc3sp49Dcy894b3Q-iSkhkltLruZtCDXx9mOcnTitac0CM0obxmWVXz8hhNCKtIVhZFforOQugIISUXYoLi3XdyQrQa78Ab57eq14CdwfNVjlXf4mETvco2bo8Xb0_Yg_F2DV71EW_tdxw8BKwC3jv_Yfs1NpvBtgHbHq-e5zjl4b0KEfA7qJjM2n2BP5yjE6M2AS7-5hS93t-9zB-y5WrxOL9dZpqxImZlxSkzivLKNI0ohWhr3qiG67pthM6N0jVRbWlEI9KtUo1guq0NM0JzIDRnU3Q15u68-xwgRNm5wffppcyLgpZ1xShPqmJUae9CSAXlztut8gdJifzlKzs58pW_fOXIN9luRhukBl8WvAzaQoLX2tQzytbZ_wN-AMzThyE</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Braimakis, Konstantinos</creator><creator>Mikelis, Angelos</creator><creator>Charalampidis, Antonios</creator><creator>Karellas, Sotirios</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200715</creationdate><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><author>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary mixtures</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Critical temperature</topic><topic>Environmental regulations</topic><topic>Evaporation</topic><topic>Exergetic efficiency</topic><topic>Exergy</topic><topic>Global optimization</topic><topic>Global warming</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Low GWP</topic><topic>Mixture</topic><topic>ORC</topic><topic>Pentane</topic><topic>Propylene</topic><topic>Refrigerants</topic><topic>Temperature gradients</topic><topic>Waste heat recovery</topic><topic>Working fluids</topic><topic>Zeotropic</topic><topic>Zeotropic mixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braimakis, Konstantinos</creatorcontrib><creatorcontrib>Mikelis, Angelos</creatorcontrib><creatorcontrib>Charalampidis, Antonios</creatorcontrib><creatorcontrib>Karellas, Sotirios</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braimakis, Konstantinos</au><au>Mikelis, Angelos</au><au>Charalampidis, Antonios</au><au>Karellas, Sotirios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>203</volume><spage>117801</spage><pages>117801-</pages><artnum>117801</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.117801</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-07, Vol.203, p.117801, Article 117801
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2441576318
source ScienceDirect Freedom Collection
subjects Binary mixtures
Carbon dioxide
Climate change
Critical temperature
Environmental regulations
Evaporation
Exergetic efficiency
Exergy
Global optimization
Global warming
Heat
Heat recovery
Low GWP
Mixture
ORC
Pentane
Propylene
Refrigerants
Temperature gradients
Waste heat recovery
Working fluids
Zeotropic
Zeotropic mixtures
title Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exergetic%20performance%20of%20CO2%20and%20ultra-low%20GWP%20refrigerant%20mixtures%20as%20working%20fluids%20in%20ORC%20for%20waste%20heat%20recovery&rft.jtitle=Energy%20(Oxford)&rft.au=Braimakis,%20Konstantinos&rft.date=2020-07-15&rft.volume=203&rft.spage=117801&rft.pages=117801-&rft.artnum=117801&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.117801&rft_dat=%3Cproquest_cross%3E2441576318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441576318&rft_id=info:pmid/&rfr_iscdi=true