Loading…
Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery
Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-...
Saved in:
Published in: | Energy (Oxford) 2020-07, Vol.203, p.117801, Article 117801 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123 |
container_end_page | |
container_issue | |
container_start_page | 117801 |
container_title | Energy (Oxford) |
container_volume | 203 |
creator | Braimakis, Konstantinos Mikelis, Angelos Charalampidis, Antonios Karellas, Sotirios |
description | Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results. |
doi_str_mv | 10.1016/j.energy.2020.117801 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441576318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220309087</els_id><sourcerecordid>2441576318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA89Zks3-SiyBFq1CoiOIxZLOTmrXd1CRr7bc3sp49Dcy894b3Q-iSkhkltLruZtCDXx9mOcnTitac0CM0obxmWVXz8hhNCKtIVhZFforOQugIISUXYoLi3XdyQrQa78Ab57eq14CdwfNVjlXf4mETvco2bo8Xb0_Yg_F2DV71EW_tdxw8BKwC3jv_Yfs1NpvBtgHbHq-e5zjl4b0KEfA7qJjM2n2BP5yjE6M2AS7-5hS93t-9zB-y5WrxOL9dZpqxImZlxSkzivLKNI0ohWhr3qiG67pthM6N0jVRbWlEI9KtUo1guq0NM0JzIDRnU3Q15u68-xwgRNm5wffppcyLgpZ1xShPqmJUae9CSAXlztut8gdJifzlKzs58pW_fOXIN9luRhukBl8WvAzaQoLX2tQzytbZ_wN-AMzThyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441576318</pqid></control><display><type>article</type><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><source>ScienceDirect Freedom Collection</source><creator>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</creator><creatorcontrib>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</creatorcontrib><description>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.117801</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Binary mixtures ; Carbon dioxide ; Climate change ; Critical temperature ; Environmental regulations ; Evaporation ; Exergetic efficiency ; Exergy ; Global optimization ; Global warming ; Heat ; Heat recovery ; Low GWP ; Mixture ; ORC ; Pentane ; Propylene ; Refrigerants ; Temperature gradients ; Waste heat recovery ; Working fluids ; Zeotropic ; Zeotropic mixtures</subject><ispartof>Energy (Oxford), 2020-07, Vol.203, p.117801, Article 117801</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</citedby><cites>FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Braimakis, Konstantinos</creatorcontrib><creatorcontrib>Mikelis, Angelos</creatorcontrib><creatorcontrib>Charalampidis, Antonios</creatorcontrib><creatorcontrib>Karellas, Sotirios</creatorcontrib><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><title>Energy (Oxford)</title><description>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</description><subject>Binary mixtures</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Critical temperature</subject><subject>Environmental regulations</subject><subject>Evaporation</subject><subject>Exergetic efficiency</subject><subject>Exergy</subject><subject>Global optimization</subject><subject>Global warming</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Low GWP</subject><subject>Mixture</subject><subject>ORC</subject><subject>Pentane</subject><subject>Propylene</subject><subject>Refrigerants</subject><subject>Temperature gradients</subject><subject>Waste heat recovery</subject><subject>Working fluids</subject><subject>Zeotropic</subject><subject>Zeotropic mixtures</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA89Zks3-SiyBFq1CoiOIxZLOTmrXd1CRr7bc3sp49Dcy894b3Q-iSkhkltLruZtCDXx9mOcnTitac0CM0obxmWVXz8hhNCKtIVhZFforOQugIISUXYoLi3XdyQrQa78Ab57eq14CdwfNVjlXf4mETvco2bo8Xb0_Yg_F2DV71EW_tdxw8BKwC3jv_Yfs1NpvBtgHbHq-e5zjl4b0KEfA7qJjM2n2BP5yjE6M2AS7-5hS93t-9zB-y5WrxOL9dZpqxImZlxSkzivLKNI0ohWhr3qiG67pthM6N0jVRbWlEI9KtUo1guq0NM0JzIDRnU3Q15u68-xwgRNm5wffppcyLgpZ1xShPqmJUae9CSAXlztut8gdJifzlKzs58pW_fOXIN9luRhukBl8WvAzaQoLX2tQzytbZ_wN-AMzThyE</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Braimakis, Konstantinos</creator><creator>Mikelis, Angelos</creator><creator>Charalampidis, Antonios</creator><creator>Karellas, Sotirios</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200715</creationdate><title>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</title><author>Braimakis, Konstantinos ; Mikelis, Angelos ; Charalampidis, Antonios ; Karellas, Sotirios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary mixtures</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Critical temperature</topic><topic>Environmental regulations</topic><topic>Evaporation</topic><topic>Exergetic efficiency</topic><topic>Exergy</topic><topic>Global optimization</topic><topic>Global warming</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Low GWP</topic><topic>Mixture</topic><topic>ORC</topic><topic>Pentane</topic><topic>Propylene</topic><topic>Refrigerants</topic><topic>Temperature gradients</topic><topic>Waste heat recovery</topic><topic>Working fluids</topic><topic>Zeotropic</topic><topic>Zeotropic mixtures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braimakis, Konstantinos</creatorcontrib><creatorcontrib>Mikelis, Angelos</creatorcontrib><creatorcontrib>Charalampidis, Antonios</creatorcontrib><creatorcontrib>Karellas, Sotirios</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braimakis, Konstantinos</au><au>Mikelis, Angelos</au><au>Charalampidis, Antonios</au><au>Karellas, Sotirios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-07-15</date><risdate>2020</risdate><volume>203</volume><spage>117801</spage><pages>117801-</pages><artnum>117801</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Environmental regulations target refrigerants with global warming potential (GWP) above 150. Meanwhile, zeotropic mixtures are proven to increase the exergetic efficiency of Organic Rankine Cycles (ORCs). The present study investigates the exergetic performance of binary mixtures of R32 and 8 ultra-low GWP fluids (n-pentane, NOVEC649, R1233zd, isobutane, R1234ze, R1234yf, propylene, and CO2) in standard and recuperative ORCs. The ORCs are optimized with respect to the molar concentrations of their components and evaporation pressure. The relative exergetic efficiency improvement of zeotropic (ZORCs) compared to pure fluid ORCs (PORCs) is negatively correlated with the heat source temperature and ranges from a maximum of 36.39% (at 100 °C) to less than 5% at temperatures above 200 °C. For each mixture, ZORCs are favorable over PORCs of their components for heat source temperatures primarily below and secondarily between the critical temperatures of their components, while the average relative performance improvement is about 30–50%. At increasing heat source temperatures, ZORCs operating with isobutane, NOVEC649, R1233zd and n-pentane are successively optimal. Although recuperative ZORCs are superior to standard ZORCs for dry mixtures of components with a large critical temperature difference at higher temperatures, standard cycles are ultimately superior considering the global optimization results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.117801</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-07, Vol.203, p.117801, Article 117801 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2441576318 |
source | ScienceDirect Freedom Collection |
subjects | Binary mixtures Carbon dioxide Climate change Critical temperature Environmental regulations Evaporation Exergetic efficiency Exergy Global optimization Global warming Heat Heat recovery Low GWP Mixture ORC Pentane Propylene Refrigerants Temperature gradients Waste heat recovery Working fluids Zeotropic Zeotropic mixtures |
title | Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exergetic%20performance%20of%20CO2%20and%20ultra-low%20GWP%20refrigerant%20mixtures%20as%20working%20fluids%20in%20ORC%20for%20waste%20heat%20recovery&rft.jtitle=Energy%20(Oxford)&rft.au=Braimakis,%20Konstantinos&rft.date=2020-07-15&rft.volume=203&rft.spage=117801&rft.pages=117801-&rft.artnum=117801&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.117801&rft_dat=%3Cproquest_cross%3E2441576318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-56813fa186fbb9599d78bab8c7db9c2fac70ad5f9b999d6ab93cd7f3f9c8e0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441576318&rft_id=info:pmid/&rfr_iscdi=true |