Loading…
Comparison of organic electrolytes at various temperatures for 2.8 V–Li-ion hybrid supercapacitors
We explore different electrolytes containing lithium perchlorate (LiClO4) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) salts in various solvents at different temperatures to associate the electrochemical stability of lithium titanium oxide (LTO)/lithium manganese oxide (LMO)-activated carb...
Saved in:
Published in: | Electrochimica acta 2020-03, Vol.337, p.135760, Article 135760 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore different electrolytes containing lithium perchlorate (LiClO4) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) salts in various solvents at different temperatures to associate the electrochemical stability of lithium titanium oxide (LTO)/lithium manganese oxide (LMO)-activated carbon (AC) composite Li-ion hybrid supercapacitors. By varying the solvents and operation temperature, we were able to detect a correlation between the electrochemical performance and the conductivity of each electrolyte. To test the electrochemical stability and longevity of the electrolytes in such a system, full-cells were analyzed via a voltage floating for 10 h at charged state (2.8 V) of the full-cell. Energy and power performance were the highest for acetonitrile (ACN) containing electrolytes due to their high lithium-ion conductivity. Additionally, the longevity of LiClO4 in 3-methoxypropionitrile (3-MPN) was superior to all tested electrolytes at ambient temperature with 97% capacity retention and energy efficiency of about 86% after 500 h of voltage floating. LiClO4 in a mixture of ACN and ethylene carbonate (EC) was the most stable electrolyte at high temperatures with 70% capacity retention after 500 h voltage floating at 60°C and 50% capacity retention after 250 h voltage floating. The longevity of LiTFSI in ACN and LiClO4 in 3-MPN electrolyte demonstrated a capacity retention of 97% and 92% after 500 h voltage floating, respectively, at low temperature (−10 °C).
[Display omitted] |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2020.135760 |