Loading…
Very low-temperature growth of few-layer graphene by Ni-induced crystallization of amorphous carbon in vacuum
Graphene of thickness a few atomic layers has been grown in Ni/a-C bilayers at temperatures as low as 300 °C by Ni-induced crystallization of the amorphous carbon (a-C) in high vacuum. The mechanism of such very low-temperature growth of graphene has been investigated by a combinatorial experimental...
Saved in:
Published in: | Carbon (New York) 2020-04, Vol.159, p.37-44 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene of thickness a few atomic layers has been grown in Ni/a-C bilayers at temperatures as low as 300 °C by Ni-induced crystallization of the amorphous carbon (a-C) in high vacuum. The mechanism of such very low-temperature growth of graphene has been investigated by a combinatorial experimental approach including x-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. The growth of this few atomic layer thickness graphene has been found to be mediated by a coupled grain-boundary (GB) diffusion/surface diffusion mechanism. GBs in the top Ni sublayer provide fast diffusion paths for C atoms through the Ni layer, as a result of which graphene layers form above the Ni. The revealed low-temperature growth mechanism of graphene induced by contact with a metal can be applicable in advancing research fields as metal-matrix graphene composites and advanced energy storage devices.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2019.12.017 |