Loading…
Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain
Wetland rehabilitation, highlighted in the United Nations (UN) Sustainable Development Goals (SDGs), is imperative for responding to decreased regional biodiversity and degraded ecosystem functions and services. Knowing where the most suitable wetland rehabilitation areas are can strengthen scientif...
Saved in:
Published in: | Water (Basel) 2020-09, Vol.12 (9), p.2496 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 2496 |
container_title | Water (Basel) |
container_volume | 12 |
creator | Qiu, Zhiqiang Luo, Ling Mao, Dehua Du, Baojia Feng, Kaidong Jia, Mingming Wang, Zongming |
description | Wetland rehabilitation, highlighted in the United Nations (UN) Sustainable Development Goals (SDGs), is imperative for responding to decreased regional biodiversity and degraded ecosystem functions and services. Knowing where the most suitable wetland rehabilitation areas are can strengthen scientific planning and decision-making for natural wetland conservation and management implementation. Therefore, we integrated multisource geospatial data characterizing hydrological, topographical, management, and policy factors, including maximum surface water coverage, farming time, anthropogenic disturbance, and wetland protection level, to identify potential wetland rehabilitation areas in the Sanjiang Plain (SJP), the largest marsh distribution and a hotspot wetland loss region in China. Our results indicate that a total of 11,643 km2 of wetlands were converted into croplands for agricultural production from 1990 to 2018. We estimated that 5415 km2 of the croplands were suitable for wetland rehabilitation in the SJP, of which 4193 km2 (77%) have high rehabilitation priority. Specifically, 63% of the potential areas available for wetland rehabilitation are dry croplands (3419 km2), the rest (37%) being paddy fields. We argue that the selected indicators and approach used in this study to determine potential wetland rehabilitation areas could guide their investigation, at either the provincial or national scale and would be beneficial to conservation and sustainable management of wetlands in the SJP. |
doi_str_mv | 10.3390/w12092496 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2441761992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A791298208</galeid><sourcerecordid>A791298208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3</originalsourceid><addsrcrecordid>eNpNUc1KA0EMXkTBUnvwDQY8eajO3_6Mt1K1FioWW_G4pLMz7ZTtTN2ZRXrS1_D1fBKnVMQkkJB8X0KSJDkn-Ioxga_fCcWCcpEdJR2Kc9bnnJPjf_Fp0vN-jaNwURQp7iQfL97YJXps62C8axup0Eg5v4VgoEa3EAAFh8aVssHoHZq6sI9i6VWFGmyFntUKFqY2ITKcRYNGgb9BAzQ1tQtoFtpqh4xFw5Wx8P355dEM7NpAnDmtwdiz5ERD7VXv13eT-f3dfPjQnzyNxsPBpC8ZI6HPleJVoVOe5bjglKiMppkQLKuY2BuoiKMixQtJJEtJlheaL0gqtabAJesmF4e228a9tcqHch2XtXFiSeNd8owIQSPq6oBaQq1KY7ULDcioldoY6azSJuYHuSBUFBQXkXB5IMjGed8oXW4bs4FmVxJc7l9S_r2E_QAKkX46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441761992</pqid></control><display><type>article</type><title>Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain</title><source>Publicly Available Content Database</source><creator>Qiu, Zhiqiang ; Luo, Ling ; Mao, Dehua ; Du, Baojia ; Feng, Kaidong ; Jia, Mingming ; Wang, Zongming</creator><creatorcontrib>Qiu, Zhiqiang ; Luo, Ling ; Mao, Dehua ; Du, Baojia ; Feng, Kaidong ; Jia, Mingming ; Wang, Zongming</creatorcontrib><description>Wetland rehabilitation, highlighted in the United Nations (UN) Sustainable Development Goals (SDGs), is imperative for responding to decreased regional biodiversity and degraded ecosystem functions and services. Knowing where the most suitable wetland rehabilitation areas are can strengthen scientific planning and decision-making for natural wetland conservation and management implementation. Therefore, we integrated multisource geospatial data characterizing hydrological, topographical, management, and policy factors, including maximum surface water coverage, farming time, anthropogenic disturbance, and wetland protection level, to identify potential wetland rehabilitation areas in the Sanjiang Plain (SJP), the largest marsh distribution and a hotspot wetland loss region in China. Our results indicate that a total of 11,643 km2 of wetlands were converted into croplands for agricultural production from 1990 to 2018. We estimated that 5415 km2 of the croplands were suitable for wetland rehabilitation in the SJP, of which 4193 km2 (77%) have high rehabilitation priority. Specifically, 63% of the potential areas available for wetland rehabilitation are dry croplands (3419 km2), the rest (37%) being paddy fields. We argue that the selected indicators and approach used in this study to determine potential wetland rehabilitation areas could guide their investigation, at either the provincial or national scale and would be beneficial to conservation and sustainable management of wetlands in the SJP.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12092496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural land ; Agricultural management ; Agricultural production ; Anthropogenic factors ; Biodiversity ; Conservation ; Datasets ; Decision making ; Ecosystems ; Environmental protection ; Floods ; Geographic information systems ; Geospatial data ; Hydrologic data ; Hydrology ; Nature conservation ; Regional development ; Rehabilitation ; Rice fields ; Spatial data ; Surface water ; Sustainable development ; Wetland management ; Wetland protection ; Wetlands</subject><ispartof>Water (Basel), 2020-09, Vol.12 (9), p.2496</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3</citedby><cites>FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3</cites><orcidid>0000-0003-3101-9153 ; 0000-0002-4548-899X ; 0000-0002-9865-8235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2441761992/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2441761992?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Qiu, Zhiqiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Mao, Dehua</creatorcontrib><creatorcontrib>Du, Baojia</creatorcontrib><creatorcontrib>Feng, Kaidong</creatorcontrib><creatorcontrib>Jia, Mingming</creatorcontrib><creatorcontrib>Wang, Zongming</creatorcontrib><title>Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain</title><title>Water (Basel)</title><description>Wetland rehabilitation, highlighted in the United Nations (UN) Sustainable Development Goals (SDGs), is imperative for responding to decreased regional biodiversity and degraded ecosystem functions and services. Knowing where the most suitable wetland rehabilitation areas are can strengthen scientific planning and decision-making for natural wetland conservation and management implementation. Therefore, we integrated multisource geospatial data characterizing hydrological, topographical, management, and policy factors, including maximum surface water coverage, farming time, anthropogenic disturbance, and wetland protection level, to identify potential wetland rehabilitation areas in the Sanjiang Plain (SJP), the largest marsh distribution and a hotspot wetland loss region in China. Our results indicate that a total of 11,643 km2 of wetlands were converted into croplands for agricultural production from 1990 to 2018. We estimated that 5415 km2 of the croplands were suitable for wetland rehabilitation in the SJP, of which 4193 km2 (77%) have high rehabilitation priority. Specifically, 63% of the potential areas available for wetland rehabilitation are dry croplands (3419 km2), the rest (37%) being paddy fields. We argue that the selected indicators and approach used in this study to determine potential wetland rehabilitation areas could guide their investigation, at either the provincial or national scale and would be beneficial to conservation and sustainable management of wetlands in the SJP.</description><subject>Agricultural land</subject><subject>Agricultural management</subject><subject>Agricultural production</subject><subject>Anthropogenic factors</subject><subject>Biodiversity</subject><subject>Conservation</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Ecosystems</subject><subject>Environmental protection</subject><subject>Floods</subject><subject>Geographic information systems</subject><subject>Geospatial data</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Nature conservation</subject><subject>Regional development</subject><subject>Rehabilitation</subject><subject>Rice fields</subject><subject>Spatial data</subject><subject>Surface water</subject><subject>Sustainable development</subject><subject>Wetland management</subject><subject>Wetland protection</subject><subject>Wetlands</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNUc1KA0EMXkTBUnvwDQY8eajO3_6Mt1K1FioWW_G4pLMz7ZTtTN2ZRXrS1_D1fBKnVMQkkJB8X0KSJDkn-Ioxga_fCcWCcpEdJR2Kc9bnnJPjf_Fp0vN-jaNwURQp7iQfL97YJXps62C8axup0Eg5v4VgoEa3EAAFh8aVssHoHZq6sI9i6VWFGmyFntUKFqY2ITKcRYNGgb9BAzQ1tQtoFtpqh4xFw5Wx8P355dEM7NpAnDmtwdiz5ERD7VXv13eT-f3dfPjQnzyNxsPBpC8ZI6HPleJVoVOe5bjglKiMppkQLKuY2BuoiKMixQtJJEtJlheaL0gqtabAJesmF4e228a9tcqHch2XtXFiSeNd8owIQSPq6oBaQq1KY7ULDcioldoY6azSJuYHuSBUFBQXkXB5IMjGed8oXW4bs4FmVxJc7l9S_r2E_QAKkX46</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Qiu, Zhiqiang</creator><creator>Luo, Ling</creator><creator>Mao, Dehua</creator><creator>Du, Baojia</creator><creator>Feng, Kaidong</creator><creator>Jia, Mingming</creator><creator>Wang, Zongming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3101-9153</orcidid><orcidid>https://orcid.org/0000-0002-4548-899X</orcidid><orcidid>https://orcid.org/0000-0002-9865-8235</orcidid></search><sort><creationdate>20200901</creationdate><title>Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain</title><author>Qiu, Zhiqiang ; Luo, Ling ; Mao, Dehua ; Du, Baojia ; Feng, Kaidong ; Jia, Mingming ; Wang, Zongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural land</topic><topic>Agricultural management</topic><topic>Agricultural production</topic><topic>Anthropogenic factors</topic><topic>Biodiversity</topic><topic>Conservation</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Ecosystems</topic><topic>Environmental protection</topic><topic>Floods</topic><topic>Geographic information systems</topic><topic>Geospatial data</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Nature conservation</topic><topic>Regional development</topic><topic>Rehabilitation</topic><topic>Rice fields</topic><topic>Spatial data</topic><topic>Surface water</topic><topic>Sustainable development</topic><topic>Wetland management</topic><topic>Wetland protection</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Zhiqiang</creatorcontrib><creatorcontrib>Luo, Ling</creatorcontrib><creatorcontrib>Mao, Dehua</creatorcontrib><creatorcontrib>Du, Baojia</creatorcontrib><creatorcontrib>Feng, Kaidong</creatorcontrib><creatorcontrib>Jia, Mingming</creatorcontrib><creatorcontrib>Wang, Zongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Zhiqiang</au><au>Luo, Ling</au><au>Mao, Dehua</au><au>Du, Baojia</au><au>Feng, Kaidong</au><au>Jia, Mingming</au><au>Wang, Zongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain</atitle><jtitle>Water (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>2496</spage><pages>2496-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Wetland rehabilitation, highlighted in the United Nations (UN) Sustainable Development Goals (SDGs), is imperative for responding to decreased regional biodiversity and degraded ecosystem functions and services. Knowing where the most suitable wetland rehabilitation areas are can strengthen scientific planning and decision-making for natural wetland conservation and management implementation. Therefore, we integrated multisource geospatial data characterizing hydrological, topographical, management, and policy factors, including maximum surface water coverage, farming time, anthropogenic disturbance, and wetland protection level, to identify potential wetland rehabilitation areas in the Sanjiang Plain (SJP), the largest marsh distribution and a hotspot wetland loss region in China. Our results indicate that a total of 11,643 km2 of wetlands were converted into croplands for agricultural production from 1990 to 2018. We estimated that 5415 km2 of the croplands were suitable for wetland rehabilitation in the SJP, of which 4193 km2 (77%) have high rehabilitation priority. Specifically, 63% of the potential areas available for wetland rehabilitation are dry croplands (3419 km2), the rest (37%) being paddy fields. We argue that the selected indicators and approach used in this study to determine potential wetland rehabilitation areas could guide their investigation, at either the provincial or national scale and would be beneficial to conservation and sustainable management of wetlands in the SJP.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w12092496</doi><orcidid>https://orcid.org/0000-0003-3101-9153</orcidid><orcidid>https://orcid.org/0000-0002-4548-899X</orcidid><orcidid>https://orcid.org/0000-0002-9865-8235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2020-09, Vol.12 (9), p.2496 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2441761992 |
source | Publicly Available Content Database |
subjects | Agricultural land Agricultural management Agricultural production Anthropogenic factors Biodiversity Conservation Datasets Decision making Ecosystems Environmental protection Floods Geographic information systems Geospatial data Hydrologic data Hydrology Nature conservation Regional development Rehabilitation Rice fields Spatial data Surface water Sustainable development Wetland management Wetland protection Wetlands |
title | Using Multisource Geospatial Data to Identify Potential Wetland Rehabilitation Areas: A Pilot Study in China’s Sanjiang Plain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Multisource%20Geospatial%20Data%20to%20Identify%20Potential%20Wetland%20Rehabilitation%20Areas:%20A%20Pilot%20Study%20in%20China%E2%80%99s%20Sanjiang%20Plain&rft.jtitle=Water%20(Basel)&rft.au=Qiu,%20Zhiqiang&rft.date=2020-09-01&rft.volume=12&rft.issue=9&rft.spage=2496&rft.pages=2496-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12092496&rft_dat=%3Cgale_proqu%3EA791298208%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-4ee4d8f546708421e62569936d39d39daec332950bc1c351678f4b15cff2a4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441761992&rft_id=info:pmid/&rft_galeid=A791298208&rfr_iscdi=true |