Loading…

Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables

Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process...

Full description

Saved in:
Bibliographic Details
Published in:Process safety and environmental protection 2020-03, Vol.135, p.70-80
Main Authors: Ghosh, Arko, Ahmed, Salim, Khan, Faisal, Rusli, Risza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.
ISSN:0957-5820
1744-3598
DOI:10.1016/j.psep.2019.12.006