Loading…
Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables
Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process...
Saved in:
Published in: | Process safety and environmental protection 2020-03, Vol.135, p.70-80 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3 |
container_end_page | 80 |
container_issue | |
container_start_page | 70 |
container_title | Process safety and environmental protection |
container_volume | 135 |
creator | Ghosh, Arko Ahmed, Salim Khan, Faisal Rusli, Risza |
description | Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool. |
doi_str_mv | 10.1016/j.psep.2019.12.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582019315538</els_id><sourcerecordid>2441886335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwBzhF4pzgJYstcanKKpVFYrka154gR60d7LRS_z2OCldOoxl9783MQ-ic4IJgUl92RR-hLygmoiC0wLg-QBPSlGXOKsEP0QSLqskrTvExOomxwxgT2pAJ-nwJXkOM2atqYdhlsxhTtwY3ZHPvojUQrPvKHjerwW5VsGqA7Mm7fGUdqJBdQw_OgNOQzdY-gX92HyO7XEE8RUetWkU4-61T9H578za_zxfPdw_z2SLXjPIhLwUVtaorwVRrWqZB66VmrWEVF2VlaIurNGSEJbzlgnAiGC4VEM4abASwKbrY-_bBf28gDrLzm-DSSknLknBeM1Yliu4pHXyMAVrZB7tWYScJlmOSspNjknJMUhIqU5JJdLUXQbp_ayHIqO34s7EB9CCNt__JfwAqhn1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886335</pqid></control><display><type>article</type><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><source>ScienceDirect Freedom Collection</source><creator>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</creator><creatorcontrib>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</creatorcontrib><description>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2019.12.006</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Bayesian analysis ; Causation ; copula function ; Data collection ; Failure analysis ; Mathematical models ; Multivariate analysis ; multivariate process system ; nonlinear dependency ; Process safety analysis ; Process variables ; Risk management ; Safety ; Stochastic processes ; Stochasticity ; Time dependence</subject><ispartof>Process safety and environmental protection, 2020-03, Vol.135, p.70-80</ispartof><rights>2019 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</citedby><cites>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghosh, Arko</creatorcontrib><creatorcontrib>Ahmed, Salim</creatorcontrib><creatorcontrib>Khan, Faisal</creatorcontrib><creatorcontrib>Rusli, Risza</creatorcontrib><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><title>Process safety and environmental protection</title><description>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</description><subject>Bayesian analysis</subject><subject>Causation</subject><subject>copula function</subject><subject>Data collection</subject><subject>Failure analysis</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate process system</subject><subject>nonlinear dependency</subject><subject>Process safety analysis</subject><subject>Process variables</subject><subject>Risk management</subject><subject>Safety</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Time dependence</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEqXwBzhF4pzgJYstcanKKpVFYrka154gR60d7LRS_z2OCldOoxl9783MQ-ic4IJgUl92RR-hLygmoiC0wLg-QBPSlGXOKsEP0QSLqskrTvExOomxwxgT2pAJ-nwJXkOM2atqYdhlsxhTtwY3ZHPvojUQrPvKHjerwW5VsGqA7Mm7fGUdqJBdQw_OgNOQzdY-gX92HyO7XEE8RUetWkU4-61T9H578za_zxfPdw_z2SLXjPIhLwUVtaorwVRrWqZB66VmrWEVF2VlaIurNGSEJbzlgnAiGC4VEM4abASwKbrY-_bBf28gDrLzm-DSSknLknBeM1Yliu4pHXyMAVrZB7tWYScJlmOSspNjknJMUhIqU5JJdLUXQbp_ayHIqO34s7EB9CCNt__JfwAqhn1u</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Ghosh, Arko</creator><creator>Ahmed, Salim</creator><creator>Khan, Faisal</creator><creator>Rusli, Risza</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202003</creationdate><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><author>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Causation</topic><topic>copula function</topic><topic>Data collection</topic><topic>Failure analysis</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate process system</topic><topic>nonlinear dependency</topic><topic>Process safety analysis</topic><topic>Process variables</topic><topic>Risk management</topic><topic>Safety</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Arko</creatorcontrib><creatorcontrib>Ahmed, Salim</creatorcontrib><creatorcontrib>Khan, Faisal</creatorcontrib><creatorcontrib>Rusli, Risza</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Arko</au><au>Ahmed, Salim</au><au>Khan, Faisal</au><au>Rusli, Risza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</atitle><jtitle>Process safety and environmental protection</jtitle><date>2020-03</date><risdate>2020</risdate><volume>135</volume><spage>70</spage><epage>80</epage><pages>70-80</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2019.12.006</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2020-03, Vol.135, p.70-80 |
issn | 0957-5820 1744-3598 |
language | eng |
recordid | cdi_proquest_journals_2441886335 |
source | ScienceDirect Freedom Collection |
subjects | Bayesian analysis Causation copula function Data collection Failure analysis Mathematical models Multivariate analysis multivariate process system nonlinear dependency Process safety analysis Process variables Risk management Safety Stochastic processes Stochasticity Time dependence |
title | Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Safety%20Assessment%20Considering%20Multivariate%20Non-linear%20Dependence%20Among%20Process%20Variables&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Ghosh,%20Arko&rft.date=2020-03&rft.volume=135&rft.spage=70&rft.epage=80&rft.pages=70-80&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2019.12.006&rft_dat=%3Cproquest_cross%3E2441886335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441886335&rft_id=info:pmid/&rfr_iscdi=true |