Loading…

Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables

Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process...

Full description

Saved in:
Bibliographic Details
Published in:Process safety and environmental protection 2020-03, Vol.135, p.70-80
Main Authors: Ghosh, Arko, Ahmed, Salim, Khan, Faisal, Rusli, Risza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3
cites cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3
container_end_page 80
container_issue
container_start_page 70
container_title Process safety and environmental protection
container_volume 135
creator Ghosh, Arko
Ahmed, Salim
Khan, Faisal
Rusli, Risza
description Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.
doi_str_mv 10.1016/j.psep.2019.12.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441886335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957582019315538</els_id><sourcerecordid>2441886335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwBzhF4pzgJYstcanKKpVFYrka154gR60d7LRS_z2OCldOoxl9783MQ-ic4IJgUl92RR-hLygmoiC0wLg-QBPSlGXOKsEP0QSLqskrTvExOomxwxgT2pAJ-nwJXkOM2atqYdhlsxhTtwY3ZHPvojUQrPvKHjerwW5VsGqA7Mm7fGUdqJBdQw_OgNOQzdY-gX92HyO7XEE8RUetWkU4-61T9H578za_zxfPdw_z2SLXjPIhLwUVtaorwVRrWqZB66VmrWEVF2VlaIurNGSEJbzlgnAiGC4VEM4abASwKbrY-_bBf28gDrLzm-DSSknLknBeM1Yliu4pHXyMAVrZB7tWYScJlmOSspNjknJMUhIqU5JJdLUXQbp_ayHIqO34s7EB9CCNt__JfwAqhn1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886335</pqid></control><display><type>article</type><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><source>ScienceDirect Freedom Collection</source><creator>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</creator><creatorcontrib>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</creatorcontrib><description>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>DOI: 10.1016/j.psep.2019.12.006</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Bayesian analysis ; Causation ; copula function ; Data collection ; Failure analysis ; Mathematical models ; Multivariate analysis ; multivariate process system ; nonlinear dependency ; Process safety analysis ; Process variables ; Risk management ; Safety ; Stochastic processes ; Stochasticity ; Time dependence</subject><ispartof>Process safety and environmental protection, 2020-03, Vol.135, p.70-80</ispartof><rights>2019 Institution of Chemical Engineers</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</citedby><cites>FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghosh, Arko</creatorcontrib><creatorcontrib>Ahmed, Salim</creatorcontrib><creatorcontrib>Khan, Faisal</creatorcontrib><creatorcontrib>Rusli, Risza</creatorcontrib><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><title>Process safety and environmental protection</title><description>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</description><subject>Bayesian analysis</subject><subject>Causation</subject><subject>copula function</subject><subject>Data collection</subject><subject>Failure analysis</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>multivariate process system</subject><subject>nonlinear dependency</subject><subject>Process safety analysis</subject><subject>Process variables</subject><subject>Risk management</subject><subject>Safety</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Time dependence</subject><issn>0957-5820</issn><issn>1744-3598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEqXwBzhF4pzgJYstcanKKpVFYrka154gR60d7LRS_z2OCldOoxl9783MQ-ic4IJgUl92RR-hLygmoiC0wLg-QBPSlGXOKsEP0QSLqskrTvExOomxwxgT2pAJ-nwJXkOM2atqYdhlsxhTtwY3ZHPvojUQrPvKHjerwW5VsGqA7Mm7fGUdqJBdQw_OgNOQzdY-gX92HyO7XEE8RUetWkU4-61T9H578za_zxfPdw_z2SLXjPIhLwUVtaorwVRrWqZB66VmrWEVF2VlaIurNGSEJbzlgnAiGC4VEM4abASwKbrY-_bBf28gDrLzm-DSSknLknBeM1Yliu4pHXyMAVrZB7tWYScJlmOSspNjknJMUhIqU5JJdLUXQbp_ayHIqO34s7EB9CCNt__JfwAqhn1u</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Ghosh, Arko</creator><creator>Ahmed, Salim</creator><creator>Khan, Faisal</creator><creator>Rusli, Risza</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202003</creationdate><title>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</title><author>Ghosh, Arko ; Ahmed, Salim ; Khan, Faisal ; Rusli, Risza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Causation</topic><topic>copula function</topic><topic>Data collection</topic><topic>Failure analysis</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>multivariate process system</topic><topic>nonlinear dependency</topic><topic>Process safety analysis</topic><topic>Process variables</topic><topic>Risk management</topic><topic>Safety</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Arko</creatorcontrib><creatorcontrib>Ahmed, Salim</creatorcontrib><creatorcontrib>Khan, Faisal</creatorcontrib><creatorcontrib>Rusli, Risza</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Arko</au><au>Ahmed, Salim</au><au>Khan, Faisal</au><au>Rusli, Risza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables</atitle><jtitle>Process safety and environmental protection</jtitle><date>2020-03</date><risdate>2020</risdate><volume>135</volume><spage>70</spage><epage>80</epage><pages>70-80</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><abstract>Nonlinear dependencies among highly correlated variables of a multifaceted process system pose significant challenges for process safety assessment. The copula function is a flexible statistical tool to capture complex dependencies and interactions among process variables in the causation of process faults. An integration of the copula function with the Bayesian network provides a framework to deal with such complex dependence. This study attempts to compare the performance of the copula-based Bayesian network with that of the traditional Bayesian network in predicting failure of a multivariate time dependent process system. Normal and abnormal process data from a small-scale pilot unit were collected to test and verify performances of failure models. Results from analysis of the collected data establish that the performance of copula-based Bayesian network is robust and superior to the performance of traditional Bayesian network. The structural flexibility, consideration of non-linear dependence among variables, uncertainty and stochastic nature of the process model provide the copula-based Bayesian network distinct advantages. This approach can be further tested and implemented as an online process monitoring and risk management tool.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.psep.2019.12.006</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-5820
ispartof Process safety and environmental protection, 2020-03, Vol.135, p.70-80
issn 0957-5820
1744-3598
language eng
recordid cdi_proquest_journals_2441886335
source ScienceDirect Freedom Collection
subjects Bayesian analysis
Causation
copula function
Data collection
Failure analysis
Mathematical models
Multivariate analysis
multivariate process system
nonlinear dependency
Process safety analysis
Process variables
Risk management
Safety
Stochastic processes
Stochasticity
Time dependence
title Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Safety%20Assessment%20Considering%20Multivariate%20Non-linear%20Dependence%20Among%20Process%20Variables&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Ghosh,%20Arko&rft.date=2020-03&rft.volume=135&rft.spage=70&rft.epage=80&rft.pages=70-80&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2019.12.006&rft_dat=%3Cproquest_cross%3E2441886335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-49296a6593afdf3ceccbc3fd358945d2f053ce313c32f891819304ae18370d9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441886335&rft_id=info:pmid/&rfr_iscdi=true