Loading…

Evolutionary multi-task optimization for parameters extraction of photovoltaic models

•Multitask optimization is developed to extract Photovoltaic models parameters.•Online local similarity is measured to guide the knowledge transfer.•The helpful knowledge is used to enhance the algorithm performance.•Results indicate the superior performance of the proposed method. As the demand for...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2020-03, Vol.207, p.112509, Article 112509
Main Authors: Liang, Jing, Qiao, Kangjia, Yuan, Minghua, Yu, Kunjie, Qu, Boyang, Ge, Shilei, Li, Yaxin, Chen, Guanlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603
cites cdi_FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603
container_end_page
container_issue
container_start_page 112509
container_title Energy conversion and management
container_volume 207
creator Liang, Jing
Qiao, Kangjia
Yuan, Minghua
Yu, Kunjie
Qu, Boyang
Ge, Shilei
Li, Yaxin
Chen, Guanlin
description •Multitask optimization is developed to extract Photovoltaic models parameters.•Online local similarity is measured to guide the knowledge transfer.•The helpful knowledge is used to enhance the algorithm performance.•Results indicate the superior performance of the proposed method. As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.
doi_str_mv 10.1016/j.enconman.2020.112509
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2441887937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890420300455</els_id><sourcerecordid>2441887937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BSl47jpJP3NTlvUDBC_uOWTTCaa2TU3SRf31Zq2ePQ3MvO87Mw8hlxRWFGh53a5wUHbo5bBiwGKTsgL4EVnQuuIpY6w6JgugvExrDvkpOfO-BYCsgHJBtpu97aZg7CDdZ9JPXTBpkP4tsWMwvfmSh1GirUtG6WSPAZ1P8CM4qX4mVifjqw02pgRpVNLbBjt_Tk607Dxe_NYl2d5tXtYP6dPz_eP69ilVWQ4hRa0U6qouM04VSNCKy4ICj3cypExhhlUDjapyupNAG-Blk2fRsysyXZaQLcnVnDs6-z6hD6K1kxviSsHynNYRQFZFVTmrlLPeO9RidKaP_woK4oBQtOIPoTggFDPCaLyZjfEl3Bt0wisTldgYhyqIxpr_Ir4Bq-Z_0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441887937</pqid></control><display><type>article</type><title>Evolutionary multi-task optimization for parameters extraction of photovoltaic models</title><source>ScienceDirect Journals</source><creator>Liang, Jing ; Qiao, Kangjia ; Yuan, Minghua ; Yu, Kunjie ; Qu, Boyang ; Ge, Shilei ; Li, Yaxin ; Chen, Guanlin</creator><creatorcontrib>Liang, Jing ; Qiao, Kangjia ; Yuan, Minghua ; Yu, Kunjie ; Qu, Boyang ; Ge, Shilei ; Li, Yaxin ; Chen, Guanlin</creatorcontrib><description>•Multitask optimization is developed to extract Photovoltaic models parameters.•Online local similarity is measured to guide the knowledge transfer.•The helpful knowledge is used to enhance the algorithm performance.•Results indicate the superior performance of the proposed method. As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2020.112509</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Crossovers ; Differential evolution ; Evolutionary algorithms ; Evolutionary multi-task optimization ; Human performance ; Mathematical models ; Optimization ; Parameter extraction ; Parameter identification ; Performance enhancement ; Photovoltaic cells ; Photovoltaic models ; Photovoltaics ; Solar energy</subject><ispartof>Energy conversion and management, 2020-03, Vol.207, p.112509, Article 112509</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Mar 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603</citedby><cites>FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603</cites><orcidid>0000-0001-9945-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Qiao, Kangjia</creatorcontrib><creatorcontrib>Yuan, Minghua</creatorcontrib><creatorcontrib>Yu, Kunjie</creatorcontrib><creatorcontrib>Qu, Boyang</creatorcontrib><creatorcontrib>Ge, Shilei</creatorcontrib><creatorcontrib>Li, Yaxin</creatorcontrib><creatorcontrib>Chen, Guanlin</creatorcontrib><title>Evolutionary multi-task optimization for parameters extraction of photovoltaic models</title><title>Energy conversion and management</title><description>•Multitask optimization is developed to extract Photovoltaic models parameters.•Online local similarity is measured to guide the knowledge transfer.•The helpful knowledge is used to enhance the algorithm performance.•Results indicate the superior performance of the proposed method. As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Crossovers</subject><subject>Differential evolution</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary multi-task optimization</subject><subject>Human performance</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter extraction</subject><subject>Parameter identification</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic models</subject><subject>Photovoltaics</subject><subject>Solar energy</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BSl47jpJP3NTlvUDBC_uOWTTCaa2TU3SRf31Zq2ePQ3MvO87Mw8hlxRWFGh53a5wUHbo5bBiwGKTsgL4EVnQuuIpY6w6JgugvExrDvkpOfO-BYCsgHJBtpu97aZg7CDdZ9JPXTBpkP4tsWMwvfmSh1GirUtG6WSPAZ1P8CM4qX4mVifjqw02pgRpVNLbBjt_Tk607Dxe_NYl2d5tXtYP6dPz_eP69ilVWQ4hRa0U6qouM04VSNCKy4ICj3cypExhhlUDjapyupNAG-Blk2fRsysyXZaQLcnVnDs6-z6hD6K1kxviSsHynNYRQFZFVTmrlLPeO9RidKaP_woK4oBQtOIPoTggFDPCaLyZjfEl3Bt0wisTldgYhyqIxpr_Ir4Bq-Z_0Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Liang, Jing</creator><creator>Qiao, Kangjia</creator><creator>Yuan, Minghua</creator><creator>Yu, Kunjie</creator><creator>Qu, Boyang</creator><creator>Ge, Shilei</creator><creator>Li, Yaxin</creator><creator>Chen, Guanlin</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9945-1976</orcidid></search><sort><creationdate>20200301</creationdate><title>Evolutionary multi-task optimization for parameters extraction of photovoltaic models</title><author>Liang, Jing ; Qiao, Kangjia ; Yuan, Minghua ; Yu, Kunjie ; Qu, Boyang ; Ge, Shilei ; Li, Yaxin ; Chen, Guanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Crossovers</topic><topic>Differential evolution</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary multi-task optimization</topic><topic>Human performance</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter extraction</topic><topic>Parameter identification</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic models</topic><topic>Photovoltaics</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Qiao, Kangjia</creatorcontrib><creatorcontrib>Yuan, Minghua</creatorcontrib><creatorcontrib>Yu, Kunjie</creatorcontrib><creatorcontrib>Qu, Boyang</creatorcontrib><creatorcontrib>Ge, Shilei</creatorcontrib><creatorcontrib>Li, Yaxin</creatorcontrib><creatorcontrib>Chen, Guanlin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jing</au><au>Qiao, Kangjia</au><au>Yuan, Minghua</au><au>Yu, Kunjie</au><au>Qu, Boyang</au><au>Ge, Shilei</au><au>Li, Yaxin</au><au>Chen, Guanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary multi-task optimization for parameters extraction of photovoltaic models</atitle><jtitle>Energy conversion and management</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>207</volume><spage>112509</spage><pages>112509-</pages><artnum>112509</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•Multitask optimization is developed to extract Photovoltaic models parameters.•Online local similarity is measured to guide the knowledge transfer.•The helpful knowledge is used to enhance the algorithm performance.•Results indicate the superior performance of the proposed method. As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2020.112509</doi><orcidid>https://orcid.org/0000-0001-9945-1976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2020-03, Vol.207, p.112509, Article 112509
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2441887937
source ScienceDirect Journals
subjects Algorithms
Crossovers
Differential evolution
Evolutionary algorithms
Evolutionary multi-task optimization
Human performance
Mathematical models
Optimization
Parameter extraction
Parameter identification
Performance enhancement
Photovoltaic cells
Photovoltaic models
Photovoltaics
Solar energy
title Evolutionary multi-task optimization for parameters extraction of photovoltaic models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20multi-task%20optimization%20for%20parameters%20extraction%20of%20photovoltaic%20models&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Liang,%20Jing&rft.date=2020-03-01&rft.volume=207&rft.spage=112509&rft.pages=112509-&rft.artnum=112509&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2020.112509&rft_dat=%3Cproquest_cross%3E2441887937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-efccef786391c0a0fc9a51098902e12ce3e7d0dc741ba01d096d43cceb53f6603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441887937&rft_id=info:pmid/&rfr_iscdi=true