Loading…

Catalytic Performance of Calcium Titanate for Catalytic Decomposition of Waste Polypropylene to Carbon Nanotubes in a Single-Stage CVD Reactor

Calcium titanate mixed metal oxides with different contents were used as supports for NiMo catalyst prepared by the sol–gel method. The activities of these catalysts were tested in the catalytic decomposition of waste polypropylene (PP) for the synthesis of carbon nanotubes (CNTs) using a single-sta...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2020-09, Vol.10 (9), p.1030
Main Authors: Modekwe, Helen Uchenna, Mamo, Messai Adenew, Daramola, Michael Olawale, Moothi, Kapil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Calcium titanate mixed metal oxides with different contents were used as supports for NiMo catalyst prepared by the sol–gel method. The activities of these catalysts were tested in the catalytic decomposition of waste polypropylene (PP) for the synthesis of carbon nanotubes (CNTs) using a single-stage chemical vapor deposition technique. The physico-chemical properties of the catalysts and deposited carbon over the catalysts were checked by X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature-programmed reduction (TPR), N2 physisorption, transmission electron microscopy (TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). The TEM and XRD results presented a high dispersion of the active metal species on the surface of the support materials. The result showed that increasing the support content led to an increased crystallite size of the catalysts and a resultant reduction in CNTs yield from 44% to 35%. NiMo-supported CaTiO3 catalyst displayed good catalytic activity and stability toward CNTs growth. Furthermore, the effect of calcination temperature on the morphology, yield, and quality of CNTs was also studied, and it was observed that thermal treatment up to 700 °C could produce well graphitized, high-quality, and high-yield CNTs from the waste PP.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10091030