Loading…
Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users
While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender syst...
Saved in:
Published in: | Wireless communications and mobile computing 2020, Vol.2020 (2020), p.1-13 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23 |
container_end_page | 13 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2020 |
creator | Tian, Zhi Cheng, Xiuzhen Li, Yingshu Siddula, Madhuri Cai, Zhipeng |
description | While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods. |
doi_str_mv | 10.1155/2020/8892321 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442161300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442161300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs3z7LgUddmkt10c9RSrVC1UntestmJ3Vo3Ndla-u9N2aJHmcMbeB8zvEfIOdAbgDTtMcpoL8sk4wwOSAdSTuNM9PuHv7uQx-TE-wWllFMGHTKauOpb6W08rOeq1lX9Hk0cGnRYN5VaRuO7afS6RreNjHXRky2qJUZTq3feMzYb6z6imUfnT8mRUUuPZ3vtktn98G0wiscvD4-D23GsuaBNnJWmVDJVhcnACAp9KTBMilBwJUChkAkyqpQ2yMoEIJOQatSMZyUtgnTJZXt35ezXGn2TL-za1eFlzpKEgQAesnXJdUtpZ70PgfKVqz6V2-ZA811X-a6rfN9VwK9afF7VpdpU_9EXLY2BQaP-aAaJBMp_ALFncec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442161300</pqid></control><display><type>article</type><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng</creator><contributor>Choo, Kim-Kwang Raymond ; Kim-Kwang Raymond Choo</contributor><creatorcontrib>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng ; Choo, Kim-Kwang Raymond ; Kim-Kwang Raymond Choo</creatorcontrib><description>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2020/8892321</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Ambient intelligence ; Coffeehouses ; Location based services ; Methods ; Privacy ; Queries ; Recommender systems ; Restaurants ; Social networks ; User profiles ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Madhuri Siddula et al.</rights><rights>Copyright © 2020 Madhuri Siddula et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</citedby><cites>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</cites><orcidid>0000-0001-6017-975X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442161300/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442161300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Choo, Kim-Kwang Raymond</contributor><contributor>Kim-Kwang Raymond Choo</contributor><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Cheng, Xiuzhen</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><creatorcontrib>Siddula, Madhuri</creatorcontrib><creatorcontrib>Cai, Zhipeng</creatorcontrib><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><title>Wireless communications and mobile computing</title><description>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Ambient intelligence</subject><subject>Coffeehouses</subject><subject>Location based services</subject><subject>Methods</subject><subject>Privacy</subject><subject>Queries</subject><subject>Recommender systems</subject><subject>Restaurants</subject><subject>Social networks</subject><subject>User profiles</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkEFLAzEQhYMoWKs3z7LgUddmkt10c9RSrVC1UntestmJ3Vo3Ndla-u9N2aJHmcMbeB8zvEfIOdAbgDTtMcpoL8sk4wwOSAdSTuNM9PuHv7uQx-TE-wWllFMGHTKauOpb6W08rOeq1lX9Hk0cGnRYN5VaRuO7afS6RreNjHXRky2qJUZTq3feMzYb6z6imUfnT8mRUUuPZ3vtktn98G0wiscvD4-D23GsuaBNnJWmVDJVhcnACAp9KTBMilBwJUChkAkyqpQ2yMoEIJOQatSMZyUtgnTJZXt35ezXGn2TL-za1eFlzpKEgQAesnXJdUtpZ70PgfKVqz6V2-ZA811X-a6rfN9VwK9afF7VpdpU_9EXLY2BQaP-aAaJBMp_ALFncec</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tian, Zhi</creator><creator>Cheng, Xiuzhen</creator><creator>Li, Yingshu</creator><creator>Siddula, Madhuri</creator><creator>Cai, Zhipeng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6017-975X</orcidid></search><sort><creationdate>2020</creationdate><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><author>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Ambient intelligence</topic><topic>Coffeehouses</topic><topic>Location based services</topic><topic>Methods</topic><topic>Privacy</topic><topic>Queries</topic><topic>Recommender systems</topic><topic>Restaurants</topic><topic>Social networks</topic><topic>User profiles</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Cheng, Xiuzhen</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><creatorcontrib>Siddula, Madhuri</creatorcontrib><creatorcontrib>Cai, Zhipeng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhi</au><au>Cheng, Xiuzhen</au><au>Li, Yingshu</au><au>Siddula, Madhuri</au><au>Cai, Zhipeng</au><au>Choo, Kim-Kwang Raymond</au><au>Kim-Kwang Raymond Choo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8892321</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6017-975X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2020, Vol.2020 (2020), p.1-13 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2442161300 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access |
subjects | Accuracy Algorithms Ambient intelligence Coffeehouses Location based services Methods Privacy Queries Recommender systems Restaurants Social networks User profiles Wireless networks |
title | Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Enhancing%20Preferential%20LBS%20Query%20for%20Mobile%20Social%20Network%20Users&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Tian,%20Zhi&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2020/8892321&rft_dat=%3Cproquest_cross%3E2442161300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442161300&rft_id=info:pmid/&rfr_iscdi=true |