Loading…

Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users

While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender syst...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2020, Vol.2020 (2020), p.1-13
Main Authors: Tian, Zhi, Cheng, Xiuzhen, Li, Yingshu, Siddula, Madhuri, Cai, Zhipeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23
cites cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23
container_end_page 13
container_issue 2020
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2020
creator Tian, Zhi
Cheng, Xiuzhen
Li, Yingshu
Siddula, Madhuri
Cai, Zhipeng
description While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.
doi_str_mv 10.1155/2020/8892321
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442161300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442161300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs3z7LgUddmkt10c9RSrVC1UntestmJ3Vo3Ndla-u9N2aJHmcMbeB8zvEfIOdAbgDTtMcpoL8sk4wwOSAdSTuNM9PuHv7uQx-TE-wWllFMGHTKauOpb6W08rOeq1lX9Hk0cGnRYN5VaRuO7afS6RreNjHXRky2qJUZTq3feMzYb6z6imUfnT8mRUUuPZ3vtktn98G0wiscvD4-D23GsuaBNnJWmVDJVhcnACAp9KTBMilBwJUChkAkyqpQ2yMoEIJOQatSMZyUtgnTJZXt35ezXGn2TL-za1eFlzpKEgQAesnXJdUtpZ70PgfKVqz6V2-ZA811X-a6rfN9VwK9afF7VpdpU_9EXLY2BQaP-aAaJBMp_ALFncec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442161300</pqid></control><display><type>article</type><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley Open Access</source><creator>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng</creator><contributor>Choo, Kim-Kwang Raymond ; Kim-Kwang Raymond Choo</contributor><creatorcontrib>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng ; Choo, Kim-Kwang Raymond ; Kim-Kwang Raymond Choo</creatorcontrib><description>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2020/8892321</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Ambient intelligence ; Coffeehouses ; Location based services ; Methods ; Privacy ; Queries ; Recommender systems ; Restaurants ; Social networks ; User profiles ; Wireless networks</subject><ispartof>Wireless communications and mobile computing, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Madhuri Siddula et al.</rights><rights>Copyright © 2020 Madhuri Siddula et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</citedby><cites>FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</cites><orcidid>0000-0001-6017-975X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442161300/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442161300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Choo, Kim-Kwang Raymond</contributor><contributor>Kim-Kwang Raymond Choo</contributor><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Cheng, Xiuzhen</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><creatorcontrib>Siddula, Madhuri</creatorcontrib><creatorcontrib>Cai, Zhipeng</creatorcontrib><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><title>Wireless communications and mobile computing</title><description>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Ambient intelligence</subject><subject>Coffeehouses</subject><subject>Location based services</subject><subject>Methods</subject><subject>Privacy</subject><subject>Queries</subject><subject>Recommender systems</subject><subject>Restaurants</subject><subject>Social networks</subject><subject>User profiles</subject><subject>Wireless networks</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkEFLAzEQhYMoWKs3z7LgUddmkt10c9RSrVC1UntestmJ3Vo3Ndla-u9N2aJHmcMbeB8zvEfIOdAbgDTtMcpoL8sk4wwOSAdSTuNM9PuHv7uQx-TE-wWllFMGHTKauOpb6W08rOeq1lX9Hk0cGnRYN5VaRuO7afS6RreNjHXRky2qJUZTq3feMzYb6z6imUfnT8mRUUuPZ3vtktn98G0wiscvD4-D23GsuaBNnJWmVDJVhcnACAp9KTBMilBwJUChkAkyqpQ2yMoEIJOQatSMZyUtgnTJZXt35ezXGn2TL-za1eFlzpKEgQAesnXJdUtpZ70PgfKVqz6V2-ZA811X-a6rfN9VwK9afF7VpdpU_9EXLY2BQaP-aAaJBMp_ALFncec</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tian, Zhi</creator><creator>Cheng, Xiuzhen</creator><creator>Li, Yingshu</creator><creator>Siddula, Madhuri</creator><creator>Cai, Zhipeng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6017-975X</orcidid></search><sort><creationdate>2020</creationdate><title>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</title><author>Tian, Zhi ; Cheng, Xiuzhen ; Li, Yingshu ; Siddula, Madhuri ; Cai, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Ambient intelligence</topic><topic>Coffeehouses</topic><topic>Location based services</topic><topic>Methods</topic><topic>Privacy</topic><topic>Queries</topic><topic>Recommender systems</topic><topic>Restaurants</topic><topic>Social networks</topic><topic>User profiles</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhi</creatorcontrib><creatorcontrib>Cheng, Xiuzhen</creatorcontrib><creatorcontrib>Li, Yingshu</creatorcontrib><creatorcontrib>Siddula, Madhuri</creatorcontrib><creatorcontrib>Cai, Zhipeng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhi</au><au>Cheng, Xiuzhen</au><au>Li, Yingshu</au><au>Siddula, Madhuri</au><au>Cai, Zhipeng</au><au>Choo, Kim-Kwang Raymond</au><au>Kim-Kwang Raymond Choo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8892321</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6017-975X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2020, Vol.2020 (2020), p.1-13
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2442161300
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley Open Access
subjects Accuracy
Algorithms
Ambient intelligence
Coffeehouses
Location based services
Methods
Privacy
Queries
Recommender systems
Restaurants
Social networks
User profiles
Wireless networks
title Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Enhancing%20Preferential%20LBS%20Query%20for%20Mobile%20Social%20Network%20Users&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Tian,%20Zhi&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2020/8892321&rft_dat=%3Cproquest_cross%3E2442161300%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-8dfda95abf81f601796e6e65e1b3a61ae694e20aacfe2d4118915cec238d0bc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442161300&rft_id=info:pmid/&rfr_iscdi=true