Loading…

Effect of Li content in ion conductivity of lithium silicate glasses

We present the electrical and the phonon vibrational properties of Li2O–2SiO2 (LS12) and Li2O–SiO2 (LS11) glasses to exploit for lithium ion transport in the merits of solid electrolyte. Electrical impedance measurements are carried out in the frequency 100 Hz–30 MHz and temperature range 30–150 °C....

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2020-06, Vol.827, p.154253, Article 154253
Main Authors: Rim, Young Hoon, Kim, Mac, Baek, Chang Gyu, Yang, Yong Suk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3
cites cdi_FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3
container_end_page
container_issue
container_start_page 154253
container_title Journal of alloys and compounds
container_volume 827
creator Rim, Young Hoon
Kim, Mac
Baek, Chang Gyu
Yang, Yong Suk
description We present the electrical and the phonon vibrational properties of Li2O–2SiO2 (LS12) and Li2O–SiO2 (LS11) glasses to exploit for lithium ion transport in the merits of solid electrolyte. Electrical impedance measurements are carried out in the frequency 100 Hz–30 MHz and temperature range 30–150 °C. Based on the theory of the modified fractional Rayleigh equation, we predict the number densities of the lithium ions in the lithium silicate glasses. As an increase in lithium content, the covalent interaction between the Li-cation and its local sites of network increases the number of the non-bridging oxygen (NBO) sites by the depolymerization of the silicate glass network. We find the fact that the number of NBOs in the LS11 glass increases a factor of two larger than the number of NBOs in the LS12 glass. A low conductivity of lithium oxide glasses is reflection of a long stay of the lithium ions in the NBO atoms. The partial Li+ ions in the lithium silicate glasses participate on the ac conduction through the NBO sites. •Li2O-xSiO2 (x = 1, 2) glasses were synthesized by melt quenching method.•The number densities of Li ions were estimated in the lithium silicate glasses.•The number of NBOs in LS11 glass increase to exactly the twice of it in LS12 glass.•The partial Li + ions participate on the ac conduction through the NBO sites.
doi_str_mv 10.1016/j.jallcom.2020.154253
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442321814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820306162</els_id><sourcerecordid>2442321814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHguWu-25xE1l0VFrzoOaRpoindZk3Shf33pnTvnoYZnneGeQC4R3CFIOKP3apTfa_9foUhzjNGMSMXYIHqipSUc3EJFlBgVtakrq_BTYwdhBAJghbgZWOt0anwtti5QvshmSEVbiicH6a2HXVyR5dOE9G79OPGfRFd77RKpvjuVYwm3oIrq_po7s51Cb62m8_1W7n7eH1fP-9KTUiVSsK4Zo1gVYUZpnVbU04Qb1phG0KJRZC1nAqYEUU1E5RbpiFHWmhoFIINWYKHee8h-N_RxCQ7P4Yhn5SYUkwwqhHNFJspHXyMwVh5CG6vwkkiKCdhspNnYXISJmdhOfc050x-4ehMkFE7M2jTupAVyda7fzb8ASVpdP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442321814</pqid></control><display><type>article</type><title>Effect of Li content in ion conductivity of lithium silicate glasses</title><source>ScienceDirect Journals</source><creator>Rim, Young Hoon ; Kim, Mac ; Baek, Chang Gyu ; Yang, Yong Suk</creator><creatorcontrib>Rim, Young Hoon ; Kim, Mac ; Baek, Chang Gyu ; Yang, Yong Suk</creatorcontrib><description>We present the electrical and the phonon vibrational properties of Li2O–2SiO2 (LS12) and Li2O–SiO2 (LS11) glasses to exploit for lithium ion transport in the merits of solid electrolyte. Electrical impedance measurements are carried out in the frequency 100 Hz–30 MHz and temperature range 30–150 °C. Based on the theory of the modified fractional Rayleigh equation, we predict the number densities of the lithium ions in the lithium silicate glasses. As an increase in lithium content, the covalent interaction between the Li-cation and its local sites of network increases the number of the non-bridging oxygen (NBO) sites by the depolymerization of the silicate glass network. We find the fact that the number of NBOs in the LS11 glass increases a factor of two larger than the number of NBOs in the LS12 glass. A low conductivity of lithium oxide glasses is reflection of a long stay of the lithium ions in the NBO atoms. The partial Li+ ions in the lithium silicate glasses participate on the ac conduction through the NBO sites. •Li2O-xSiO2 (x = 1, 2) glasses were synthesized by melt quenching method.•The number densities of Li ions were estimated in the lithium silicate glasses.•The number of NBOs in LS11 glass increase to exactly the twice of it in LS12 glass.•The partial Li + ions participate on the ac conduction through the NBO sites.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.154253</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Depolymerization ; Electrical conductivity ; Electrical impedance ; Electrical resistivity ; Glass ; Ion transport ; Lithium ; Lithium ions ; Lithium oxides ; Lithium silicate ; Low conductivity ; Raman spectroscopy ; Rayleigh equations ; Silicon dioxide ; Solid electrolytes</subject><ispartof>Journal of alloys and compounds, 2020-06, Vol.827, p.154253, Article 154253</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 25, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3</citedby><cites>FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rim, Young Hoon</creatorcontrib><creatorcontrib>Kim, Mac</creatorcontrib><creatorcontrib>Baek, Chang Gyu</creatorcontrib><creatorcontrib>Yang, Yong Suk</creatorcontrib><title>Effect of Li content in ion conductivity of lithium silicate glasses</title><title>Journal of alloys and compounds</title><description>We present the electrical and the phonon vibrational properties of Li2O–2SiO2 (LS12) and Li2O–SiO2 (LS11) glasses to exploit for lithium ion transport in the merits of solid electrolyte. Electrical impedance measurements are carried out in the frequency 100 Hz–30 MHz and temperature range 30–150 °C. Based on the theory of the modified fractional Rayleigh equation, we predict the number densities of the lithium ions in the lithium silicate glasses. As an increase in lithium content, the covalent interaction between the Li-cation and its local sites of network increases the number of the non-bridging oxygen (NBO) sites by the depolymerization of the silicate glass network. We find the fact that the number of NBOs in the LS11 glass increases a factor of two larger than the number of NBOs in the LS12 glass. A low conductivity of lithium oxide glasses is reflection of a long stay of the lithium ions in the NBO atoms. The partial Li+ ions in the lithium silicate glasses participate on the ac conduction through the NBO sites. •Li2O-xSiO2 (x = 1, 2) glasses were synthesized by melt quenching method.•The number densities of Li ions were estimated in the lithium silicate glasses.•The number of NBOs in LS11 glass increase to exactly the twice of it in LS12 glass.•The partial Li + ions participate on the ac conduction through the NBO sites.</description><subject>Depolymerization</subject><subject>Electrical conductivity</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>Glass</subject><subject>Ion transport</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium oxides</subject><subject>Lithium silicate</subject><subject>Low conductivity</subject><subject>Raman spectroscopy</subject><subject>Rayleigh equations</subject><subject>Silicon dioxide</subject><subject>Solid electrolytes</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKHguWu-25xE1l0VFrzoOaRpoindZk3Shf33pnTvnoYZnneGeQC4R3CFIOKP3apTfa_9foUhzjNGMSMXYIHqipSUc3EJFlBgVtakrq_BTYwdhBAJghbgZWOt0anwtti5QvshmSEVbiicH6a2HXVyR5dOE9G79OPGfRFd77RKpvjuVYwm3oIrq_po7s51Cb62m8_1W7n7eH1fP-9KTUiVSsK4Zo1gVYUZpnVbU04Qb1phG0KJRZC1nAqYEUU1E5RbpiFHWmhoFIINWYKHee8h-N_RxCQ7P4Yhn5SYUkwwqhHNFJspHXyMwVh5CG6vwkkiKCdhspNnYXISJmdhOfc050x-4ehMkFE7M2jTupAVyda7fzb8ASVpdP0</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Rim, Young Hoon</creator><creator>Kim, Mac</creator><creator>Baek, Chang Gyu</creator><creator>Yang, Yong Suk</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200625</creationdate><title>Effect of Li content in ion conductivity of lithium silicate glasses</title><author>Rim, Young Hoon ; Kim, Mac ; Baek, Chang Gyu ; Yang, Yong Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Depolymerization</topic><topic>Electrical conductivity</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>Glass</topic><topic>Ion transport</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium oxides</topic><topic>Lithium silicate</topic><topic>Low conductivity</topic><topic>Raman spectroscopy</topic><topic>Rayleigh equations</topic><topic>Silicon dioxide</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rim, Young Hoon</creatorcontrib><creatorcontrib>Kim, Mac</creatorcontrib><creatorcontrib>Baek, Chang Gyu</creatorcontrib><creatorcontrib>Yang, Yong Suk</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rim, Young Hoon</au><au>Kim, Mac</au><au>Baek, Chang Gyu</au><au>Yang, Yong Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Li content in ion conductivity of lithium silicate glasses</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2020-06-25</date><risdate>2020</risdate><volume>827</volume><spage>154253</spage><pages>154253-</pages><artnum>154253</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We present the electrical and the phonon vibrational properties of Li2O–2SiO2 (LS12) and Li2O–SiO2 (LS11) glasses to exploit for lithium ion transport in the merits of solid electrolyte. Electrical impedance measurements are carried out in the frequency 100 Hz–30 MHz and temperature range 30–150 °C. Based on the theory of the modified fractional Rayleigh equation, we predict the number densities of the lithium ions in the lithium silicate glasses. As an increase in lithium content, the covalent interaction between the Li-cation and its local sites of network increases the number of the non-bridging oxygen (NBO) sites by the depolymerization of the silicate glass network. We find the fact that the number of NBOs in the LS11 glass increases a factor of two larger than the number of NBOs in the LS12 glass. A low conductivity of lithium oxide glasses is reflection of a long stay of the lithium ions in the NBO atoms. The partial Li+ ions in the lithium silicate glasses participate on the ac conduction through the NBO sites. •Li2O-xSiO2 (x = 1, 2) glasses were synthesized by melt quenching method.•The number densities of Li ions were estimated in the lithium silicate glasses.•The number of NBOs in LS11 glass increase to exactly the twice of it in LS12 glass.•The partial Li + ions participate on the ac conduction through the NBO sites.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.154253</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2020-06, Vol.827, p.154253, Article 154253
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2442321814
source ScienceDirect Journals
subjects Depolymerization
Electrical conductivity
Electrical impedance
Electrical resistivity
Glass
Ion transport
Lithium
Lithium ions
Lithium oxides
Lithium silicate
Low conductivity
Raman spectroscopy
Rayleigh equations
Silicon dioxide
Solid electrolytes
title Effect of Li content in ion conductivity of lithium silicate glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Li%20content%20in%20ion%20conductivity%20of%20lithium%20silicate%20glasses&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Rim,%20Young%20Hoon&rft.date=2020-06-25&rft.volume=827&rft.spage=154253&rft.pages=154253-&rft.artnum=154253&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.154253&rft_dat=%3Cproquest_cross%3E2442321814%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-356c5b957725248d846316bd9fb343f105d64905b9a4c5946f5c061c9c0ea10b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442321814&rft_id=info:pmid/&rfr_iscdi=true