Loading…
Photoactivated Polymersome Nanomotors: Traversing Biological Barriers
Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca....
Saved in:
Published in: | Angewandte Chemie 2020-09, Vol.132 (39), p.17066-17073 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3 |
container_end_page | 17073 |
container_issue | 39 |
container_start_page | 17066 |
container_title | Angewandte Chemie |
container_volume | 132 |
creator | Shao, Jingxin Cao, Shoupeng Williams, David S. Abdelmohsen, Loai K. E. A. Hest, Jan C. M. |
description | Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells. |
doi_str_mv | 10.1002/ange.202003748 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442593795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442593795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujiYhePS_xPHxt13X1BgTRhCAHPDdd94Yj24rtwPDfO4LRo6eX_N73vZf8CLmnMKIA7NG0GxwxYABcJtkFGVDBaMylkJdkAJAkccYSdU1uQtgCQMqkGpDZ6sN1ztiuOpgOi2jl6mODPrgGo6VpXdNvfXiK1t4c-rhqN9GkcrXbVNbU0cR4X_XxLbkqTR3w7mcOyfvzbD19iRdv89fpeBFbJlkWqzyzJSqRpaXFUmCZ8iJNpRB5XqDgUEpjeF4ITnMUyKgtGDeYKcDEUg6WD8nD-e7Ou889hk5v3d63_UvNkoQJxaUSPTU6U9a7EDyWeuerxvijpqBPVelTVfq3ql5QZ-GrqvH4D63Hy_nsz_0GgtButA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442593795</pqid></control><display><type>article</type><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</creator><creatorcontrib>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</creatorcontrib><description>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202003748</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biodegradability ; Biodegradation ; Block copolymers ; Cargo ; Cell membranes ; Chemistry ; I.R. radiation ; intracellular delivery ; Irradiation ; Macromolecules ; Morphology ; nanomotors ; Nanotechnology devices ; Near infrared radiation ; pH-sensitive polymer ; photothermal effect ; Polyethylene glycol ; polymersomes</subject><ispartof>Angewandte Chemie, 2020-09, Vol.132 (39), p.17066-17073</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</citedby><cites>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</cites><orcidid>0000-0001-7973-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Jingxin</creatorcontrib><creatorcontrib>Cao, Shoupeng</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><title>Angewandte Chemie</title><description>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Block copolymers</subject><subject>Cargo</subject><subject>Cell membranes</subject><subject>Chemistry</subject><subject>I.R. radiation</subject><subject>intracellular delivery</subject><subject>Irradiation</subject><subject>Macromolecules</subject><subject>Morphology</subject><subject>nanomotors</subject><subject>Nanotechnology devices</subject><subject>Near infrared radiation</subject><subject>pH-sensitive polymer</subject><subject>photothermal effect</subject><subject>Polyethylene glycol</subject><subject>polymersomes</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFPwjAUhxujiYhePS_xPHxt13X1BgTRhCAHPDdd94Yj24rtwPDfO4LRo6eX_N73vZf8CLmnMKIA7NG0GxwxYABcJtkFGVDBaMylkJdkAJAkccYSdU1uQtgCQMqkGpDZ6sN1ztiuOpgOi2jl6mODPrgGo6VpXdNvfXiK1t4c-rhqN9GkcrXbVNbU0cR4X_XxLbkqTR3w7mcOyfvzbD19iRdv89fpeBFbJlkWqzyzJSqRpaXFUmCZ8iJNpRB5XqDgUEpjeF4ITnMUyKgtGDeYKcDEUg6WD8nD-e7Ou889hk5v3d63_UvNkoQJxaUSPTU6U9a7EDyWeuerxvijpqBPVelTVfq3ql5QZ-GrqvH4D63Hy_nsz_0GgtButA</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Shao, Jingxin</creator><creator>Cao, Shoupeng</creator><creator>Williams, David S.</creator><creator>Abdelmohsen, Loai K. E. A.</creator><creator>Hest, Jan C. M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid></search><sort><creationdate>20200921</creationdate><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><author>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Block copolymers</topic><topic>Cargo</topic><topic>Cell membranes</topic><topic>Chemistry</topic><topic>I.R. radiation</topic><topic>intracellular delivery</topic><topic>Irradiation</topic><topic>Macromolecules</topic><topic>Morphology</topic><topic>nanomotors</topic><topic>Nanotechnology devices</topic><topic>Near infrared radiation</topic><topic>pH-sensitive polymer</topic><topic>photothermal effect</topic><topic>Polyethylene glycol</topic><topic>polymersomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jingxin</creatorcontrib><creatorcontrib>Cao, Shoupeng</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jingxin</au><au>Cao, Shoupeng</au><au>Williams, David S.</au><au>Abdelmohsen, Loai K. E. A.</au><au>Hest, Jan C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>132</volume><issue>39</issue><spage>17066</spage><epage>17073</epage><pages>17066-17073</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.
Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202003748</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2020-09, Vol.132 (39), p.17066-17073 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2442593795 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biodegradability Biodegradation Block copolymers Cargo Cell membranes Chemistry I.R. radiation intracellular delivery Irradiation Macromolecules Morphology nanomotors Nanotechnology devices Near infrared radiation pH-sensitive polymer photothermal effect Polyethylene glycol polymersomes |
title | Photoactivated Polymersome Nanomotors: Traversing Biological Barriers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoactivated%20Polymersome%20Nanomotors:%20Traversing%20Biological%20Barriers&rft.jtitle=Angewandte%20Chemie&rft.au=Shao,%20Jingxin&rft.date=2020-09-21&rft.volume=132&rft.issue=39&rft.spage=17066&rft.epage=17073&rft.pages=17066-17073&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202003748&rft_dat=%3Cproquest_cross%3E2442593795%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442593795&rft_id=info:pmid/&rfr_iscdi=true |