Loading…

Photoactivated Polymersome Nanomotors: Traversing Biological Barriers

Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca....

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2020-09, Vol.132 (39), p.17066-17073
Main Authors: Shao, Jingxin, Cao, Shoupeng, Williams, David S., Abdelmohsen, Loai K. E. A., Hest, Jan C. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3
cites cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3
container_end_page 17073
container_issue 39
container_start_page 17066
container_title Angewandte Chemie
container_volume 132
creator Shao, Jingxin
Cao, Shoupeng
Williams, David S.
Abdelmohsen, Loai K. E. A.
Hest, Jan C. M.
description Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo. Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.
doi_str_mv 10.1002/ange.202003748
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442593795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442593795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujiYhePS_xPHxt13X1BgTRhCAHPDdd94Yj24rtwPDfO4LRo6eX_N73vZf8CLmnMKIA7NG0GxwxYABcJtkFGVDBaMylkJdkAJAkccYSdU1uQtgCQMqkGpDZ6sN1ztiuOpgOi2jl6mODPrgGo6VpXdNvfXiK1t4c-rhqN9GkcrXbVNbU0cR4X_XxLbkqTR3w7mcOyfvzbD19iRdv89fpeBFbJlkWqzyzJSqRpaXFUmCZ8iJNpRB5XqDgUEpjeF4ITnMUyKgtGDeYKcDEUg6WD8nD-e7Ou889hk5v3d63_UvNkoQJxaUSPTU6U9a7EDyWeuerxvijpqBPVelTVfq3ql5QZ-GrqvH4D63Hy_nsz_0GgtButA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442593795</pqid></control><display><type>article</type><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</creator><creatorcontrib>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</creatorcontrib><description>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo. Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202003748</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biodegradability ; Biodegradation ; Block copolymers ; Cargo ; Cell membranes ; Chemistry ; I.R. radiation ; intracellular delivery ; Irradiation ; Macromolecules ; Morphology ; nanomotors ; Nanotechnology devices ; Near infrared radiation ; pH-sensitive polymer ; photothermal effect ; Polyethylene glycol ; polymersomes</subject><ispartof>Angewandte Chemie, 2020-09, Vol.132 (39), p.17066-17073</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</citedby><cites>FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</cites><orcidid>0000-0001-7973-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Jingxin</creatorcontrib><creatorcontrib>Cao, Shoupeng</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><title>Angewandte Chemie</title><description>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo. Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Block copolymers</subject><subject>Cargo</subject><subject>Cell membranes</subject><subject>Chemistry</subject><subject>I.R. radiation</subject><subject>intracellular delivery</subject><subject>Irradiation</subject><subject>Macromolecules</subject><subject>Morphology</subject><subject>nanomotors</subject><subject>Nanotechnology devices</subject><subject>Near infrared radiation</subject><subject>pH-sensitive polymer</subject><subject>photothermal effect</subject><subject>Polyethylene glycol</subject><subject>polymersomes</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFPwjAUhxujiYhePS_xPHxt13X1BgTRhCAHPDdd94Yj24rtwPDfO4LRo6eX_N73vZf8CLmnMKIA7NG0GxwxYABcJtkFGVDBaMylkJdkAJAkccYSdU1uQtgCQMqkGpDZ6sN1ztiuOpgOi2jl6mODPrgGo6VpXdNvfXiK1t4c-rhqN9GkcrXbVNbU0cR4X_XxLbkqTR3w7mcOyfvzbD19iRdv89fpeBFbJlkWqzyzJSqRpaXFUmCZ8iJNpRB5XqDgUEpjeF4ITnMUyKgtGDeYKcDEUg6WD8nD-e7Ou889hk5v3d63_UvNkoQJxaUSPTU6U9a7EDyWeuerxvijpqBPVelTVfq3ql5QZ-GrqvH4D63Hy_nsz_0GgtButA</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Shao, Jingxin</creator><creator>Cao, Shoupeng</creator><creator>Williams, David S.</creator><creator>Abdelmohsen, Loai K. E. A.</creator><creator>Hest, Jan C. M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid></search><sort><creationdate>20200921</creationdate><title>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</title><author>Shao, Jingxin ; Cao, Shoupeng ; Williams, David S. ; Abdelmohsen, Loai K. E. A. ; Hest, Jan C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Block copolymers</topic><topic>Cargo</topic><topic>Cell membranes</topic><topic>Chemistry</topic><topic>I.R. radiation</topic><topic>intracellular delivery</topic><topic>Irradiation</topic><topic>Macromolecules</topic><topic>Morphology</topic><topic>nanomotors</topic><topic>Nanotechnology devices</topic><topic>Near infrared radiation</topic><topic>pH-sensitive polymer</topic><topic>photothermal effect</topic><topic>Polyethylene glycol</topic><topic>polymersomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jingxin</creatorcontrib><creatorcontrib>Cao, Shoupeng</creatorcontrib><creatorcontrib>Williams, David S.</creatorcontrib><creatorcontrib>Abdelmohsen, Loai K. E. A.</creatorcontrib><creatorcontrib>Hest, Jan C. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jingxin</au><au>Cao, Shoupeng</au><au>Williams, David S.</au><au>Abdelmohsen, Loai K. E. A.</au><au>Hest, Jan C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoactivated Polymersome Nanomotors: Traversing Biological Barriers</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>132</volume><issue>39</issue><spage>17066</spage><epage>17073</epage><pages>17066-17073</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo. Delivery driver: Photo‐activated polymersome nanomotors (PNMs) composed of a biodegradable polymersome system coated with a hemisphere gold layer were utilized for intracellular delivery of molecular cargo via the assistance of a NIR laser. The active penetration of the cell membrane by the nanomotors allowed both encapsulated payloads and surrounding cargo to be delivered into cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202003748</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7973-2404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-09, Vol.132 (39), p.17066-17073
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2442593795
source Wiley-Blackwell Read & Publish Collection
subjects Biodegradability
Biodegradation
Block copolymers
Cargo
Cell membranes
Chemistry
I.R. radiation
intracellular delivery
Irradiation
Macromolecules
Morphology
nanomotors
Nanotechnology devices
Near infrared radiation
pH-sensitive polymer
photothermal effect
Polyethylene glycol
polymersomes
title Photoactivated Polymersome Nanomotors: Traversing Biological Barriers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoactivated%20Polymersome%20Nanomotors:%20Traversing%20Biological%20Barriers&rft.jtitle=Angewandte%20Chemie&rft.au=Shao,%20Jingxin&rft.date=2020-09-21&rft.volume=132&rft.issue=39&rft.spage=17066&rft.epage=17073&rft.pages=17066-17073&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202003748&rft_dat=%3Cproquest_cross%3E2442593795%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2728-9b8cfe9586fcef5ef63d66755bbde530f7aa3bd531be5e21cd23ae890e4c130c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442593795&rft_id=info:pmid/&rfr_iscdi=true