Loading…

TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)

N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefi...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2020-09, Vol.132 (39), p.17218-17224
Main Authors: Neate, Peter G. N., Greenhalgh, Mark D., Brennessel, William W., Thomas, Stephen P., Neidig, Michael L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723
cites cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723
container_end_page 17224
container_issue 39
container_start_page 17218
container_title Angewandte Chemie
container_volume 132
creator Neate, Peter G. N.
Greenhalgh, Mark D.
Brennessel, William W.
Thomas, Stephen P.
Neidig, Michael L.
description N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis. Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.
doi_str_mv 10.1002/ange.202006639
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442594190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442594190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltioUOKc3E-zBaVfkQqINHukZNcqpQ0Lk4qFCZmJn4jvwQ3RTAy-WQ9z3u6l5BLmw1txuBGViscAgPGPM8RR6Rnu2Bbju_6x6THGOdWAFyckrO6XjMDgS965GN5P74LaVHRSKvq6_1zJBtZtm-Y0VmbabWRqwrrQjaFqm7pROlNN1KVd8J1FA2MFJbPbUkXW0wLrGmuNB2pqtGqLE3OE2a7tJMaRQ2JFRpl0cikKIv9oi6IDc7JSS7LGi9-3j5ZTsbL0cyaP06jUTi3UvBBWIlkSeJl5uTMzoAH6Jur3MQTLAFAZjvSfHgpBAnmwsWA5y5PBQPMPUh8cPrk6hC71eplh3UTr9VOV2ZjDJyDK7gtmKGGByrVqq415vFWFxup29hm8b7ueF93_Fu3EcRBeC1KbP-h4_BhOv5zvwEyKobN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442594190</pqid></control><display><type>article</type><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</creator><creatorcontrib>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</creatorcontrib><description>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis. Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202006639</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Access control ; Additives ; Catalysis ; Chemical reactions ; Chemistry ; Coordination compounds ; Coupling (molecular) ; Cross coupling ; hydromagnesiation ; Iron ; mechanism ; Mode of action ; Reduction ; Species ; Styrene ; Styrenes ; TMEDA</subject><ispartof>Angewandte Chemie, 2020-09, Vol.132 (39), p.17218-17224</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</citedby><cites>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</cites><orcidid>0000-0001-5461-1825 ; 0000-0001-8614-2947 ; 0000-0002-2300-3867 ; 0000-0002-4176-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Greenhalgh, Mark D.</creatorcontrib><creatorcontrib>Brennessel, William W.</creatorcontrib><creatorcontrib>Thomas, Stephen P.</creatorcontrib><creatorcontrib>Neidig, Michael L.</creatorcontrib><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><title>Angewandte Chemie</title><description>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis. Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</description><subject>Access control</subject><subject>Additives</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Coupling (molecular)</subject><subject>Cross coupling</subject><subject>hydromagnesiation</subject><subject>Iron</subject><subject>mechanism</subject><subject>Mode of action</subject><subject>Reduction</subject><subject>Species</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>TMEDA</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltioUOKc3E-zBaVfkQqINHukZNcqpQ0Lk4qFCZmJn4jvwQ3RTAy-WQ9z3u6l5BLmw1txuBGViscAgPGPM8RR6Rnu2Bbju_6x6THGOdWAFyckrO6XjMDgS965GN5P74LaVHRSKvq6_1zJBtZtm-Y0VmbabWRqwrrQjaFqm7pROlNN1KVd8J1FA2MFJbPbUkXW0wLrGmuNB2pqtGqLE3OE2a7tJMaRQ2JFRpl0cikKIv9oi6IDc7JSS7LGi9-3j5ZTsbL0cyaP06jUTi3UvBBWIlkSeJl5uTMzoAH6Jur3MQTLAFAZjvSfHgpBAnmwsWA5y5PBQPMPUh8cPrk6hC71eplh3UTr9VOV2ZjDJyDK7gtmKGGByrVqq415vFWFxup29hm8b7ueF93_Fu3EcRBeC1KbP-h4_BhOv5zvwEyKobN</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Neate, Peter G. N.</creator><creator>Greenhalgh, Mark D.</creator><creator>Brennessel, William W.</creator><creator>Thomas, Stephen P.</creator><creator>Neidig, Michael L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5461-1825</orcidid><orcidid>https://orcid.org/0000-0001-8614-2947</orcidid><orcidid>https://orcid.org/0000-0002-2300-3867</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid></search><sort><creationdate>20200921</creationdate><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><author>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access control</topic><topic>Additives</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Coupling (molecular)</topic><topic>Cross coupling</topic><topic>hydromagnesiation</topic><topic>Iron</topic><topic>mechanism</topic><topic>Mode of action</topic><topic>Reduction</topic><topic>Species</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>TMEDA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Greenhalgh, Mark D.</creatorcontrib><creatorcontrib>Brennessel, William W.</creatorcontrib><creatorcontrib>Thomas, Stephen P.</creatorcontrib><creatorcontrib>Neidig, Michael L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neate, Peter G. N.</au><au>Greenhalgh, Mark D.</au><au>Brennessel, William W.</au><au>Thomas, Stephen P.</au><au>Neidig, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>132</volume><issue>39</issue><spage>17218</spage><epage>17224</epage><pages>17218-17224</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis. Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202006639</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5461-1825</orcidid><orcidid>https://orcid.org/0000-0001-8614-2947</orcidid><orcidid>https://orcid.org/0000-0002-2300-3867</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2020-09, Vol.132 (39), p.17218-17224
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2442594190
source Wiley-Blackwell Read & Publish Collection
subjects Access control
Additives
Catalysis
Chemical reactions
Chemistry
Coordination compounds
Coupling (molecular)
Cross coupling
hydromagnesiation
Iron
mechanism
Mode of action
Reduction
Species
Styrene
Styrenes
TMEDA
title TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMEDA%20in%20Iron%E2%80%90Catalyzed%20Hydromagnesiation:%20Formation%20of%20Iron(II)%E2%80%90Alkyl%20Species%20for%20Controlled%20Reduction%20to%20Alkene%E2%80%90Stabilized%20Iron(0)&rft.jtitle=Angewandte%20Chemie&rft.au=Neate,%20Peter%20G.%20N.&rft.date=2020-09-21&rft.volume=132&rft.issue=39&rft.spage=17218&rft.epage=17224&rft.pages=17218-17224&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202006639&rft_dat=%3Cproquest_cross%3E2442594190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442594190&rft_id=info:pmid/&rfr_iscdi=true