Loading…
TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)
N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefi...
Saved in:
Published in: | Angewandte Chemie 2020-09, Vol.132 (39), p.17218-17224 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723 |
---|---|
cites | cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723 |
container_end_page | 17224 |
container_issue | 39 |
container_start_page | 17218 |
container_title | Angewandte Chemie |
container_volume | 132 |
creator | Neate, Peter G. N. Greenhalgh, Mark D. Brennessel, William W. Thomas, Stephen P. Neidig, Michael L. |
description | N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.
Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis. |
doi_str_mv | 10.1002/ange.202006639 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442594190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442594190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltioUOKc3E-zBaVfkQqINHukZNcqpQ0Lk4qFCZmJn4jvwQ3RTAy-WQ9z3u6l5BLmw1txuBGViscAgPGPM8RR6Rnu2Bbju_6x6THGOdWAFyckrO6XjMDgS965GN5P74LaVHRSKvq6_1zJBtZtm-Y0VmbabWRqwrrQjaFqm7pROlNN1KVd8J1FA2MFJbPbUkXW0wLrGmuNB2pqtGqLE3OE2a7tJMaRQ2JFRpl0cikKIv9oi6IDc7JSS7LGi9-3j5ZTsbL0cyaP06jUTi3UvBBWIlkSeJl5uTMzoAH6Jur3MQTLAFAZjvSfHgpBAnmwsWA5y5PBQPMPUh8cPrk6hC71eplh3UTr9VOV2ZjDJyDK7gtmKGGByrVqq415vFWFxup29hm8b7ueF93_Fu3EcRBeC1KbP-h4_BhOv5zvwEyKobN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442594190</pqid></control><display><type>article</type><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</creator><creatorcontrib>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</creatorcontrib><description>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.
Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202006639</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Access control ; Additives ; Catalysis ; Chemical reactions ; Chemistry ; Coordination compounds ; Coupling (molecular) ; Cross coupling ; hydromagnesiation ; Iron ; mechanism ; Mode of action ; Reduction ; Species ; Styrene ; Styrenes ; TMEDA</subject><ispartof>Angewandte Chemie, 2020-09, Vol.132 (39), p.17218-17224</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</citedby><cites>FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</cites><orcidid>0000-0001-5461-1825 ; 0000-0001-8614-2947 ; 0000-0002-2300-3867 ; 0000-0002-4176-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Greenhalgh, Mark D.</creatorcontrib><creatorcontrib>Brennessel, William W.</creatorcontrib><creatorcontrib>Thomas, Stephen P.</creatorcontrib><creatorcontrib>Neidig, Michael L.</creatorcontrib><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><title>Angewandte Chemie</title><description>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.
Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</description><subject>Access control</subject><subject>Additives</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Coupling (molecular)</subject><subject>Cross coupling</subject><subject>hydromagnesiation</subject><subject>Iron</subject><subject>mechanism</subject><subject>Mode of action</subject><subject>Reduction</subject><subject>Species</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>TMEDA</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltioUOKc3E-zBaVfkQqINHukZNcqpQ0Lk4qFCZmJn4jvwQ3RTAy-WQ9z3u6l5BLmw1txuBGViscAgPGPM8RR6Rnu2Bbju_6x6THGOdWAFyckrO6XjMDgS965GN5P74LaVHRSKvq6_1zJBtZtm-Y0VmbabWRqwrrQjaFqm7pROlNN1KVd8J1FA2MFJbPbUkXW0wLrGmuNB2pqtGqLE3OE2a7tJMaRQ2JFRpl0cikKIv9oi6IDc7JSS7LGi9-3j5ZTsbL0cyaP06jUTi3UvBBWIlkSeJl5uTMzoAH6Jur3MQTLAFAZjvSfHgpBAnmwsWA5y5PBQPMPUh8cPrk6hC71eplh3UTr9VOV2ZjDJyDK7gtmKGGByrVqq415vFWFxup29hm8b7ueF93_Fu3EcRBeC1KbP-h4_BhOv5zvwEyKobN</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Neate, Peter G. N.</creator><creator>Greenhalgh, Mark D.</creator><creator>Brennessel, William W.</creator><creator>Thomas, Stephen P.</creator><creator>Neidig, Michael L.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5461-1825</orcidid><orcidid>https://orcid.org/0000-0001-8614-2947</orcidid><orcidid>https://orcid.org/0000-0002-2300-3867</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid></search><sort><creationdate>20200921</creationdate><title>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</title><author>Neate, Peter G. N. ; Greenhalgh, Mark D. ; Brennessel, William W. ; Thomas, Stephen P. ; Neidig, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Access control</topic><topic>Additives</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Coupling (molecular)</topic><topic>Cross coupling</topic><topic>hydromagnesiation</topic><topic>Iron</topic><topic>mechanism</topic><topic>Mode of action</topic><topic>Reduction</topic><topic>Species</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>TMEDA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Greenhalgh, Mark D.</creatorcontrib><creatorcontrib>Brennessel, William W.</creatorcontrib><creatorcontrib>Thomas, Stephen P.</creatorcontrib><creatorcontrib>Neidig, Michael L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neate, Peter G. N.</au><au>Greenhalgh, Mark D.</au><au>Brennessel, William W.</au><au>Thomas, Stephen P.</au><au>Neidig, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)</atitle><jtitle>Angewandte Chemie</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>132</volume><issue>39</issue><spage>17218</spage><epage>17224</epage><pages>17218-17224</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.
Studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA identified initial formation of TMEDA‐iron(II) alkyl species. These undergo controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes, not accessible in the absence of TMEDA. This controlled reduction and access to iron (0) species represents a new paradigm for the role of TMEDA as an additive in iron catalysis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202006639</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5461-1825</orcidid><orcidid>https://orcid.org/0000-0001-8614-2947</orcidid><orcidid>https://orcid.org/0000-0002-2300-3867</orcidid><orcidid>https://orcid.org/0000-0002-4176-7633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2020-09, Vol.132 (39), p.17218-17224 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2442594190 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Access control Additives Catalysis Chemical reactions Chemistry Coordination compounds Coupling (molecular) Cross coupling hydromagnesiation Iron mechanism Mode of action Reduction Species Styrene Styrenes TMEDA |
title | TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMEDA%20in%20Iron%E2%80%90Catalyzed%20Hydromagnesiation:%20Formation%20of%20Iron(II)%E2%80%90Alkyl%20Species%20for%20Controlled%20Reduction%20to%20Alkene%E2%80%90Stabilized%20Iron(0)&rft.jtitle=Angewandte%20Chemie&rft.au=Neate,%20Peter%20G.%20N.&rft.date=2020-09-21&rft.volume=132&rft.issue=39&rft.spage=17218&rft.epage=17224&rft.pages=17218-17224&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202006639&rft_dat=%3Cproquest_cross%3E2442594190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2729-ba0bb6d100d1d248e72495b690b22e013a7246c28bef95e84f54c902ef62b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442594190&rft_id=info:pmid/&rfr_iscdi=true |