Loading…

Physical parameter space of bimetric theory and SN1a constraints

Bimetric theory describes a massless and a massive spin-2 field with fully non-linear (self-)interactions. It has a rich phenomenology and has been successfully tested with several data sets. However, the observational constraints have not been combined in a consistent framework, yet. We propose a p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cosmology and astroparticle physics 2020-09, Vol.2020 (9), p.24-24
Main Authors: Lüben, Marvin, Schmidt-May, Angnis, Weller, Jochen
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bimetric theory describes a massless and a massive spin-2 field with fully non-linear (self-)interactions. It has a rich phenomenology and has been successfully tested with several data sets. However, the observational constraints have not been combined in a consistent framework, yet. We propose a parametrization of bimetric solutions in terms of the effective cosmological constant Λ and the mass mFP of the spin-2 field as well as its coupling strength to ordinary matter . This simplifies choosing priors in statistical analysis and allows to directly constrain these parameters with observational data not only from local systems but also from cosmology. By identifying the physical vacuum of bimetric theory these parameters are uniquely determined. We work out the new parametrization for various submodels and present the implied consistency constraints on the physical parameter space. As an application we derive observational constraints from SN1a on the physical parameters. We find that a large portion of the physical parameter space is in perfect agreement with current supernova data including self-accelerating models with a heavy spin-2 field.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2020/09/024