Loading…

Simulated annealing with adaptive cooling rates

As one of the most robust global optimization methods, simulated annealing has received considerable attention with many variations that attempt to improve the cooling schedule. This paper introduces a variant of molecular dynamics-based simulated annealing that is useful for optimizing atomistic st...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-09, Vol.153 (11), p.114103-114103
Main Authors: Karabin, Mariia, Stuart, Steven J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3
cites cdi_FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3
container_end_page 114103
container_issue 11
container_start_page 114103
container_title The Journal of chemical physics
container_volume 153
creator Karabin, Mariia
Stuart, Steven J.
description As one of the most robust global optimization methods, simulated annealing has received considerable attention with many variations that attempt to improve the cooling schedule. This paper introduces a variant of molecular dynamics-based simulated annealing that is useful for optimizing atomistic structures, and makes use of the heat capacity of the system, determined on the fly during optimization, to adaptively control the cooling rate. This adaptive cooling approach is demonstrated to be more computationally efficient than classical simulated annealing when applied to Lennard-Jones clusters. The increase in efficiency is approximately a factor of two for clusters with 25–40 atoms, and improves as the size of the system increases.
doi_str_mv 10.1063/5.0018725
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2442670417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442670417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcKPCtCeZXDpLKd6g4EJdh0wumjKdqUlG8e3N2K5cuDpw-Djn50foHMMMA6_mbAaAF4KwAzTBsKhLwWs4RBMAgsuaAz9GJzGuIStB6ATNn_1maFWyplBdZ1Xru7fiy6f3Qhm1Tf7TFrrvf7chq3iKjpxqoz3bzyl6vbt9WT6Uq6f7x-XNqtQVYSl_dVXdVMQSrJg2QnHtODSmoY42FRBDgDDnDHau4SZn4UyzGmpCrdaNsNUUXe7ubkP_MdiY5MZHbdtWdbYfoiSUMkoYEJHpxR-67ofQ5XSjIlwAxaO62ikd-hiDdXIb_EaFb4lBjtVJJvfVZXu9s1H7pJLvu3_wD--1bFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442670417</pqid></control><display><type>article</type><title>Simulated annealing with adaptive cooling rates</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Karabin, Mariia ; Stuart, Steven J.</creator><creatorcontrib>Karabin, Mariia ; Stuart, Steven J.</creatorcontrib><description>As one of the most robust global optimization methods, simulated annealing has received considerable attention with many variations that attempt to improve the cooling schedule. This paper introduces a variant of molecular dynamics-based simulated annealing that is useful for optimizing atomistic structures, and makes use of the heat capacity of the system, determined on the fly during optimization, to adaptively control the cooling rate. This adaptive cooling approach is demonstrated to be more computationally efficient than classical simulated annealing when applied to Lennard-Jones clusters. The increase in efficiency is approximately a factor of two for clusters with 25–40 atoms, and improves as the size of the system increases.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0018725</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adaptive control ; Clusters ; Computer simulation ; Cooling ; Cooling rate ; Global optimization ; Molecular dynamics ; Schedules ; Simulated annealing</subject><ispartof>The Journal of chemical physics, 2020-09, Vol.153 (11), p.114103-114103</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3</citedby><cites>FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3</cites><orcidid>0000-0003-0081-8497 ; 0000-0002-5091-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0018725$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76154</link.rule.ids></links><search><creatorcontrib>Karabin, Mariia</creatorcontrib><creatorcontrib>Stuart, Steven J.</creatorcontrib><title>Simulated annealing with adaptive cooling rates</title><title>The Journal of chemical physics</title><description>As one of the most robust global optimization methods, simulated annealing has received considerable attention with many variations that attempt to improve the cooling schedule. This paper introduces a variant of molecular dynamics-based simulated annealing that is useful for optimizing atomistic structures, and makes use of the heat capacity of the system, determined on the fly during optimization, to adaptively control the cooling rate. This adaptive cooling approach is demonstrated to be more computationally efficient than classical simulated annealing when applied to Lennard-Jones clusters. The increase in efficiency is approximately a factor of two for clusters with 25–40 atoms, and improves as the size of the system increases.</description><subject>Adaptive control</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Global optimization</subject><subject>Molecular dynamics</subject><subject>Schedules</subject><subject>Simulated annealing</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcKPCtCeZXDpLKd6g4EJdh0wumjKdqUlG8e3N2K5cuDpw-Djn50foHMMMA6_mbAaAF4KwAzTBsKhLwWs4RBMAgsuaAz9GJzGuIStB6ATNn_1maFWyplBdZ1Xru7fiy6f3Qhm1Tf7TFrrvf7chq3iKjpxqoz3bzyl6vbt9WT6Uq6f7x-XNqtQVYSl_dVXdVMQSrJg2QnHtODSmoY42FRBDgDDnDHau4SZn4UyzGmpCrdaNsNUUXe7ubkP_MdiY5MZHbdtWdbYfoiSUMkoYEJHpxR-67ofQ5XSjIlwAxaO62ikd-hiDdXIb_EaFb4lBjtVJJvfVZXu9s1H7pJLvu3_wD--1bFY</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Karabin, Mariia</creator><creator>Stuart, Steven J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0081-8497</orcidid><orcidid>https://orcid.org/0000-0002-5091-8077</orcidid></search><sort><creationdate>20200921</creationdate><title>Simulated annealing with adaptive cooling rates</title><author>Karabin, Mariia ; Stuart, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Global optimization</topic><topic>Molecular dynamics</topic><topic>Schedules</topic><topic>Simulated annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karabin, Mariia</creatorcontrib><creatorcontrib>Stuart, Steven J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karabin, Mariia</au><au>Stuart, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated annealing with adaptive cooling rates</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-09-21</date><risdate>2020</risdate><volume>153</volume><issue>11</issue><spage>114103</spage><epage>114103</epage><pages>114103-114103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>As one of the most robust global optimization methods, simulated annealing has received considerable attention with many variations that attempt to improve the cooling schedule. This paper introduces a variant of molecular dynamics-based simulated annealing that is useful for optimizing atomistic structures, and makes use of the heat capacity of the system, determined on the fly during optimization, to adaptively control the cooling rate. This adaptive cooling approach is demonstrated to be more computationally efficient than classical simulated annealing when applied to Lennard-Jones clusters. The increase in efficiency is approximately a factor of two for clusters with 25–40 atoms, and improves as the size of the system increases.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0018725</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0081-8497</orcidid><orcidid>https://orcid.org/0000-0002-5091-8077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-09, Vol.153 (11), p.114103-114103
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2442670417
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Adaptive control
Clusters
Computer simulation
Cooling
Cooling rate
Global optimization
Molecular dynamics
Schedules
Simulated annealing
title Simulated annealing with adaptive cooling rates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20annealing%20with%20adaptive%20cooling%20rates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Karabin,%20Mariia&rft.date=2020-09-21&rft.volume=153&rft.issue=11&rft.spage=114103&rft.epage=114103&rft.pages=114103-114103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0018725&rft_dat=%3Cproquest_scita%3E2442670417%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-76f39b32e21a5cd7a6cf60bdb4f4b302d2025ffd1ffb6d01765c590924eccb7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442670417&rft_id=info:pmid/&rfr_iscdi=true