Loading…

Comments on “A Hamilton sufficient condition for completely independent spanning tree”

Spanning trees T1,T2,…,Tk (k≥2) in a graph G are called completely independent spanning trees (CISTs for short) if for any two vertices x,y of G, the paths joining x and y in these k trees are pairwise openly disjoint. Hong and Zhang (2018) recently showed that a sufficient condition for Hamiltonian...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2020-09, Vol.283, p.730-733
Main Authors: Qin, Xiao-Wen, Hao, Rong-Xia, Pai, Kung-Jui, Chang, Jou-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223
cites cdi_FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223
container_end_page 733
container_issue
container_start_page 730
container_title Discrete Applied Mathematics
container_volume 283
creator Qin, Xiao-Wen
Hao, Rong-Xia
Pai, Kung-Jui
Chang, Jou-Ming
description Spanning trees T1,T2,…,Tk (k≥2) in a graph G are called completely independent spanning trees (CISTs for short) if for any two vertices x,y of G, the paths joining x and y in these k trees are pairwise openly disjoint. Hong and Zhang (2018) recently showed that a sufficient condition for Hamiltonian graphs still suffices for the existence of two CISTs. That is, if G is a graph with n vertices and |N(x)∪N(y)|≥n2, |N(x)∩N(y)|≥3 for every two nonadjacent vertices x,y of G and n≥5, then G admits two CISTs. In this note, we first attend that the restriction on the number of vertices in the statement should be revised. Moreover, we point out that there is a flaw in their proof. Accordingly, we give an amendment to correct the proof.
doi_str_mv 10.1016/j.dam.2020.01.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442826976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20300330</els_id><sourcerecordid>2442826976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI5-gLuC69aXtE1aXA2DOsKAGwVxE9I0kZS2qUlGmN18iP7cfIkZxrWbXG5y73vhIHSNIcOA6W2XtWLICBDIAGdAihM0wxUjKWUMn6JZzNCU4OrtHF143wEAjm6G3pd2GNQYfGLHZL_7XiQrMZg-ROc3Whtp4mMi7diaYOKlti66YepVUP02MWOrJhWPGPKTGEczfiTBKbXf_VyiMy16r67-dI5eH-5flqt0_fz4tFysU5nTKqRlrksmSikoBijyFnSpWEsaVjcV0VG1hqKpFRZ1JUWdl5VktQZSU92whpB8jm6OcydnPzfKB97ZjRvjSk6KglSE1ozGFD6mpLPeO6X55Mwg3JZj4AeEvOMRIT8g5IB5RBg7d8eOit__Mspxf-AhVWuckoG31vzT_gVMjXvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442826976</pqid></control><display><type>article</type><title>Comments on “A Hamilton sufficient condition for completely independent spanning tree”</title><source>ScienceDirect Freedom Collection</source><creator>Qin, Xiao-Wen ; Hao, Rong-Xia ; Pai, Kung-Jui ; Chang, Jou-Ming</creator><creatorcontrib>Qin, Xiao-Wen ; Hao, Rong-Xia ; Pai, Kung-Jui ; Chang, Jou-Ming</creatorcontrib><description>Spanning trees T1,T2,…,Tk (k≥2) in a graph G are called completely independent spanning trees (CISTs for short) if for any two vertices x,y of G, the paths joining x and y in these k trees are pairwise openly disjoint. Hong and Zhang (2018) recently showed that a sufficient condition for Hamiltonian graphs still suffices for the existence of two CISTs. That is, if G is a graph with n vertices and |N(x)∪N(y)|≥n2, |N(x)∩N(y)|≥3 for every two nonadjacent vertices x,y of G and n≥5, then G admits two CISTs. In this note, we first attend that the restriction on the number of vertices in the statement should be revised. Moreover, we point out that there is a flaw in their proof. Accordingly, we give an amendment to correct the proof.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.01.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; CIST-partition ; Completely independent spanning trees ; Graph theory ; Sufficient condition ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2020-09, Vol.283, p.730-733</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223</citedby><cites>FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223</cites><orcidid>0000-0001-8714-8750 ; 0000-0002-9542-7968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qin, Xiao-Wen</creatorcontrib><creatorcontrib>Hao, Rong-Xia</creatorcontrib><creatorcontrib>Pai, Kung-Jui</creatorcontrib><creatorcontrib>Chang, Jou-Ming</creatorcontrib><title>Comments on “A Hamilton sufficient condition for completely independent spanning tree”</title><title>Discrete Applied Mathematics</title><description>Spanning trees T1,T2,…,Tk (k≥2) in a graph G are called completely independent spanning trees (CISTs for short) if for any two vertices x,y of G, the paths joining x and y in these k trees are pairwise openly disjoint. Hong and Zhang (2018) recently showed that a sufficient condition for Hamiltonian graphs still suffices for the existence of two CISTs. That is, if G is a graph with n vertices and |N(x)∪N(y)|≥n2, |N(x)∩N(y)|≥3 for every two nonadjacent vertices x,y of G and n≥5, then G admits two CISTs. In this note, we first attend that the restriction on the number of vertices in the statement should be revised. Moreover, we point out that there is a flaw in their proof. Accordingly, we give an amendment to correct the proof.</description><subject>Apexes</subject><subject>CIST-partition</subject><subject>Completely independent spanning trees</subject><subject>Graph theory</subject><subject>Sufficient condition</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI5-gLuC69aXtE1aXA2DOsKAGwVxE9I0kZS2qUlGmN18iP7cfIkZxrWbXG5y73vhIHSNIcOA6W2XtWLICBDIAGdAihM0wxUjKWUMn6JZzNCU4OrtHF143wEAjm6G3pd2GNQYfGLHZL_7XiQrMZg-ROc3Whtp4mMi7diaYOKlti66YepVUP02MWOrJhWPGPKTGEczfiTBKbXf_VyiMy16r67-dI5eH-5flqt0_fz4tFysU5nTKqRlrksmSikoBijyFnSpWEsaVjcV0VG1hqKpFRZ1JUWdl5VktQZSU92whpB8jm6OcydnPzfKB97ZjRvjSk6KglSE1ozGFD6mpLPeO6X55Mwg3JZj4AeEvOMRIT8g5IB5RBg7d8eOit__Mspxf-AhVWuckoG31vzT_gVMjXvY</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Qin, Xiao-Wen</creator><creator>Hao, Rong-Xia</creator><creator>Pai, Kung-Jui</creator><creator>Chang, Jou-Ming</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8714-8750</orcidid><orcidid>https://orcid.org/0000-0002-9542-7968</orcidid></search><sort><creationdate>20200915</creationdate><title>Comments on “A Hamilton sufficient condition for completely independent spanning tree”</title><author>Qin, Xiao-Wen ; Hao, Rong-Xia ; Pai, Kung-Jui ; Chang, Jou-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>CIST-partition</topic><topic>Completely independent spanning trees</topic><topic>Graph theory</topic><topic>Sufficient condition</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xiao-Wen</creatorcontrib><creatorcontrib>Hao, Rong-Xia</creatorcontrib><creatorcontrib>Pai, Kung-Jui</creatorcontrib><creatorcontrib>Chang, Jou-Ming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Xiao-Wen</au><au>Hao, Rong-Xia</au><au>Pai, Kung-Jui</au><au>Chang, Jou-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on “A Hamilton sufficient condition for completely independent spanning tree”</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>283</volume><spage>730</spage><epage>733</epage><pages>730-733</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Spanning trees T1,T2,…,Tk (k≥2) in a graph G are called completely independent spanning trees (CISTs for short) if for any two vertices x,y of G, the paths joining x and y in these k trees are pairwise openly disjoint. Hong and Zhang (2018) recently showed that a sufficient condition for Hamiltonian graphs still suffices for the existence of two CISTs. That is, if G is a graph with n vertices and |N(x)∪N(y)|≥n2, |N(x)∩N(y)|≥3 for every two nonadjacent vertices x,y of G and n≥5, then G admits two CISTs. In this note, we first attend that the restriction on the number of vertices in the statement should be revised. Moreover, we point out that there is a flaw in their proof. Accordingly, we give an amendment to correct the proof.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.01.024</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8714-8750</orcidid><orcidid>https://orcid.org/0000-0002-9542-7968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-09, Vol.283, p.730-733
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2442826976
source ScienceDirect Freedom Collection
subjects Apexes
CIST-partition
Completely independent spanning trees
Graph theory
Sufficient condition
Trees (mathematics)
title Comments on “A Hamilton sufficient condition for completely independent spanning tree”
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20%E2%80%9CA%20Hamilton%20sufficient%20condition%20for%20completely%20independent%20spanning%20tree%E2%80%9D&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Qin,%20Xiao-Wen&rft.date=2020-09-15&rft.volume=283&rft.spage=730&rft.epage=733&rft.pages=730-733&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.01.024&rft_dat=%3Cproquest_cross%3E2442826976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-53f57a5ca610043d0f5e7d2b79b82f2b7ff04b9e1a98ca9358c79f0296fb7b223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442826976&rft_id=info:pmid/&rfr_iscdi=true