Loading…
Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries
Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, w...
Saved in:
Published in: | Energy & environmental science 2020-09, Vol.13 (9), p.2839-2848 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63 |
container_end_page | 2848 |
container_issue | 9 |
container_start_page | 2839 |
container_title | Energy & environmental science |
container_volume | 13 |
creator | Lee, Ju-Hyuk Kim, Riyul Kim, Soohyun Heo, Jiyun Kwon, Hyeokjin Yang, Jung Hoon Kim, Hee-Tak |
description | Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm
−2
and 20 mA h cm
−2
, while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries.
Highly reversible aqueous zinc anodes are demonstrated
via
suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects. |
doi_str_mv | 10.1039/d0ee00723d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442838960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442838960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhRtRcFwu3oWIN6E1naS3ozjjAoIXvXhpslTGDG1nrGSU8b_4X804LjdPVVBfvVe8yrKDgp4WlLdnhgJQWjNuNrJRUZciL2tabf70Vcu2s50QZpRWjNbtKPsYw2DQRcgtApDHgUAPOqI3MPfBRecHEtFNp4BgiFoSN0RAGf2z08SjclH25Gmp0Bn3Lr9wb1cycjAkuGHaA3mVWg56SbREleYGbHIIxHok8mUBfhHSQq5kSA62929EyZhMHIS9bMvKPsD-d93NHi4n9xfX-e3d1c3F-W2uuRAxL1vFZWt4I5gVtpGiFK0xzOpamYZCJUtmi0ooqiQ3tGlYybUyGqCkTVGYiu9mx2vdOfp0UYjdzC9wSJYdE4I1vGkrmqiTNaXRh4Bguzm6Z4nLrqDdKv5uTCeTr_jHCT5awxj0L_f3nm5ubGIO_2P4JxXnkOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442838960</pqid></control><display><type>article</type><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</creator><creatorcontrib>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</creatorcontrib><description>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm
−2
and 20 mA h cm
−2
, while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries.
Highly reversible aqueous zinc anodes are demonstrated
via
suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee00723d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Bonding strength ; Bromine ; Carbon ; Defects ; Dendritic structure ; Deposition ; Electrochemical analysis ; Electrochemistry ; Energy storage ; Flammability ; Flow stability ; Flux density ; Hybridization ; Rechargeable batteries ; Storage batteries ; Storage systems ; Surface diffusion ; Vacancies ; Zinc</subject><ispartof>Energy & environmental science, 2020-09, Vol.13 (9), p.2839-2848</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</citedby><cites>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</cites><orcidid>0000-0002-3009-5130 ; 0000-0003-4578-5422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lee, Ju-Hyuk</creatorcontrib><creatorcontrib>Kim, Riyul</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Heo, Jiyun</creatorcontrib><creatorcontrib>Kwon, Hyeokjin</creatorcontrib><creatorcontrib>Yang, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><title>Energy & environmental science</title><description>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm
−2
and 20 mA h cm
−2
, while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries.
Highly reversible aqueous zinc anodes are demonstrated
via
suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</description><subject>Batteries</subject><subject>Bonding strength</subject><subject>Bromine</subject><subject>Carbon</subject><subject>Defects</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Flammability</subject><subject>Flow stability</subject><subject>Flux density</subject><subject>Hybridization</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Surface diffusion</subject><subject>Vacancies</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUlLBDEQhRtRcFwu3oWIN6E1naS3ozjjAoIXvXhpslTGDG1nrGSU8b_4X804LjdPVVBfvVe8yrKDgp4WlLdnhgJQWjNuNrJRUZciL2tabf70Vcu2s50QZpRWjNbtKPsYw2DQRcgtApDHgUAPOqI3MPfBRecHEtFNp4BgiFoSN0RAGf2z08SjclH25Gmp0Bn3Lr9wb1cycjAkuGHaA3mVWg56SbREleYGbHIIxHok8mUBfhHSQq5kSA62929EyZhMHIS9bMvKPsD-d93NHi4n9xfX-e3d1c3F-W2uuRAxL1vFZWt4I5gVtpGiFK0xzOpamYZCJUtmi0ooqiQ3tGlYybUyGqCkTVGYiu9mx2vdOfp0UYjdzC9wSJYdE4I1vGkrmqiTNaXRh4Bguzm6Z4nLrqDdKv5uTCeTr_jHCT5awxj0L_f3nm5ubGIO_2P4JxXnkOU</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Lee, Ju-Hyuk</creator><creator>Kim, Riyul</creator><creator>Kim, Soohyun</creator><creator>Heo, Jiyun</creator><creator>Kwon, Hyeokjin</creator><creator>Yang, Jung Hoon</creator><creator>Kim, Hee-Tak</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3009-5130</orcidid><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid></search><sort><creationdate>20200916</creationdate><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><author>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Bonding strength</topic><topic>Bromine</topic><topic>Carbon</topic><topic>Defects</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Flammability</topic><topic>Flow stability</topic><topic>Flux density</topic><topic>Hybridization</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Surface diffusion</topic><topic>Vacancies</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ju-Hyuk</creatorcontrib><creatorcontrib>Kim, Riyul</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Heo, Jiyun</creatorcontrib><creatorcontrib>Kwon, Hyeokjin</creatorcontrib><creatorcontrib>Yang, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ju-Hyuk</au><au>Kim, Riyul</au><au>Kim, Soohyun</au><au>Heo, Jiyun</au><au>Kwon, Hyeokjin</au><au>Yang, Jung Hoon</au><au>Kim, Hee-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</atitle><jtitle>Energy & environmental science</jtitle><date>2020-09-16</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2839</spage><epage>2848</epage><pages>2839-2848</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm
−2
and 20 mA h cm
−2
, while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries.
Highly reversible aqueous zinc anodes are demonstrated
via
suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee00723d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3009-5130</orcidid><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2020-09, Vol.13 (9), p.2839-2848 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2442838960 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Batteries Bonding strength Bromine Carbon Defects Dendritic structure Deposition Electrochemical analysis Electrochemistry Energy storage Flammability Flow stability Flux density Hybridization Rechargeable batteries Storage batteries Storage systems Surface diffusion Vacancies Zinc |
title | Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite-free%20Zn%20electrodeposition%20triggered%20by%20interatomic%20orbital%20hybridization%20of%20Zn%20and%20single%20vacancy%20carbon%20defects%20for%20aqueous%20Zn-based%20flow%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lee,%20Ju-Hyuk&rft.date=2020-09-16&rft.volume=13&rft.issue=9&rft.spage=2839&rft.epage=2848&rft.pages=2839-2848&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee00723d&rft_dat=%3Cproquest_cross%3E2442838960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442838960&rft_id=info:pmid/&rfr_iscdi=true |