Loading…

Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries

Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, w...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2020-09, Vol.13 (9), p.2839-2848
Main Authors: Lee, Ju-Hyuk, Kim, Riyul, Kim, Soohyun, Heo, Jiyun, Kwon, Hyeokjin, Yang, Jung Hoon, Kim, Hee-Tak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63
cites cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63
container_end_page 2848
container_issue 9
container_start_page 2839
container_title Energy & environmental science
container_volume 13
creator Lee, Ju-Hyuk
Kim, Riyul
Kim, Soohyun
Heo, Jiyun
Kwon, Hyeokjin
Yang, Jung Hoon
Kim, Hee-Tak
description Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm −2 and 20 mA h cm −2 , while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries. Highly reversible aqueous zinc anodes are demonstrated via suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.
doi_str_mv 10.1039/d0ee00723d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2442838960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2442838960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhRtRcFwu3oWIN6E1naS3ozjjAoIXvXhpslTGDG1nrGSU8b_4X804LjdPVVBfvVe8yrKDgp4WlLdnhgJQWjNuNrJRUZciL2tabf70Vcu2s50QZpRWjNbtKPsYw2DQRcgtApDHgUAPOqI3MPfBRecHEtFNp4BgiFoSN0RAGf2z08SjclH25Gmp0Bn3Lr9wb1cycjAkuGHaA3mVWg56SbREleYGbHIIxHok8mUBfhHSQq5kSA62929EyZhMHIS9bMvKPsD-d93NHi4n9xfX-e3d1c3F-W2uuRAxL1vFZWt4I5gVtpGiFK0xzOpamYZCJUtmi0ooqiQ3tGlYybUyGqCkTVGYiu9mx2vdOfp0UYjdzC9wSJYdE4I1vGkrmqiTNaXRh4Bguzm6Z4nLrqDdKv5uTCeTr_jHCT5awxj0L_f3nm5ubGIO_2P4JxXnkOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442838960</pqid></control><display><type>article</type><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</creator><creatorcontrib>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</creatorcontrib><description>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm −2 and 20 mA h cm −2 , while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries. Highly reversible aqueous zinc anodes are demonstrated via suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee00723d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Bonding strength ; Bromine ; Carbon ; Defects ; Dendritic structure ; Deposition ; Electrochemical analysis ; Electrochemistry ; Energy storage ; Flammability ; Flow stability ; Flux density ; Hybridization ; Rechargeable batteries ; Storage batteries ; Storage systems ; Surface diffusion ; Vacancies ; Zinc</subject><ispartof>Energy &amp; environmental science, 2020-09, Vol.13 (9), p.2839-2848</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</citedby><cites>FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</cites><orcidid>0000-0002-3009-5130 ; 0000-0003-4578-5422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lee, Ju-Hyuk</creatorcontrib><creatorcontrib>Kim, Riyul</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Heo, Jiyun</creatorcontrib><creatorcontrib>Kwon, Hyeokjin</creatorcontrib><creatorcontrib>Yang, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><title>Energy &amp; environmental science</title><description>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm −2 and 20 mA h cm −2 , while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries. Highly reversible aqueous zinc anodes are demonstrated via suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</description><subject>Batteries</subject><subject>Bonding strength</subject><subject>Bromine</subject><subject>Carbon</subject><subject>Defects</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Flammability</subject><subject>Flow stability</subject><subject>Flux density</subject><subject>Hybridization</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Surface diffusion</subject><subject>Vacancies</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUlLBDEQhRtRcFwu3oWIN6E1naS3ozjjAoIXvXhpslTGDG1nrGSU8b_4X804LjdPVVBfvVe8yrKDgp4WlLdnhgJQWjNuNrJRUZciL2tabf70Vcu2s50QZpRWjNbtKPsYw2DQRcgtApDHgUAPOqI3MPfBRecHEtFNp4BgiFoSN0RAGf2z08SjclH25Gmp0Bn3Lr9wb1cycjAkuGHaA3mVWg56SbREleYGbHIIxHok8mUBfhHSQq5kSA62929EyZhMHIS9bMvKPsD-d93NHi4n9xfX-e3d1c3F-W2uuRAxL1vFZWt4I5gVtpGiFK0xzOpamYZCJUtmi0ooqiQ3tGlYybUyGqCkTVGYiu9mx2vdOfp0UYjdzC9wSJYdE4I1vGkrmqiTNaXRh4Bguzm6Z4nLrqDdKv5uTCeTr_jHCT5awxj0L_f3nm5ubGIO_2P4JxXnkOU</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Lee, Ju-Hyuk</creator><creator>Kim, Riyul</creator><creator>Kim, Soohyun</creator><creator>Heo, Jiyun</creator><creator>Kwon, Hyeokjin</creator><creator>Yang, Jung Hoon</creator><creator>Kim, Hee-Tak</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3009-5130</orcidid><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid></search><sort><creationdate>20200916</creationdate><title>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</title><author>Lee, Ju-Hyuk ; Kim, Riyul ; Kim, Soohyun ; Heo, Jiyun ; Kwon, Hyeokjin ; Yang, Jung Hoon ; Kim, Hee-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Bonding strength</topic><topic>Bromine</topic><topic>Carbon</topic><topic>Defects</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Flammability</topic><topic>Flow stability</topic><topic>Flux density</topic><topic>Hybridization</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Surface diffusion</topic><topic>Vacancies</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ju-Hyuk</creatorcontrib><creatorcontrib>Kim, Riyul</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Heo, Jiyun</creatorcontrib><creatorcontrib>Kwon, Hyeokjin</creatorcontrib><creatorcontrib>Yang, Jung Hoon</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ju-Hyuk</au><au>Kim, Riyul</au><au>Kim, Soohyun</au><au>Heo, Jiyun</au><au>Kwon, Hyeokjin</au><au>Yang, Jung Hoon</au><au>Kim, Hee-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2020-09-16</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2839</spage><epage>2848</epage><pages>2839-2848</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aqueous zinc (Zn)-based flow batteries are an attractive option for energy storage systems due to their inflammability and high energy density. However, Zn dendrite formation, which causes internal short circuiting and capacity drop, limits the long-term operation of Zn-based flow batteries. Here, we present highly stable Zn deposition/dissolution achieved by a defective carbon surface. DFT calculations and electrochemical analysis demonstrate that a single vacancy carbon defect prevents the surface diffusion of Zn and consequent aggregative Zn growth by forming a strong orbital hybridization between Zn and the dangling bonds of the defect. Triggered by the interatomic interaction, a defective carbon-decorated electrode achieves dendrite-free Zn deposition and excellent cycling stability in zinc-bromine flow batteries (ZBBs) over 5000 cycles at 100 mA cm −2 and 20 mA h cm −2 , while maintaining coulombic efficiency above 97%. The deeper understanding of defect chemistry provides a new scientific strategy to engineer advanced Zn-based aqueous batteries. Highly reversible aqueous zinc anodes are demonstrated via suppressing surface diffusion of Zn adatoms from strong orbital hybridization of the Zn adatoms and single vacancy defects.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee00723d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3009-5130</orcidid><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2020-09, Vol.13 (9), p.2839-2848
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2442838960
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Batteries
Bonding strength
Bromine
Carbon
Defects
Dendritic structure
Deposition
Electrochemical analysis
Electrochemistry
Energy storage
Flammability
Flow stability
Flux density
Hybridization
Rechargeable batteries
Storage batteries
Storage systems
Surface diffusion
Vacancies
Zinc
title Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendrite-free%20Zn%20electrodeposition%20triggered%20by%20interatomic%20orbital%20hybridization%20of%20Zn%20and%20single%20vacancy%20carbon%20defects%20for%20aqueous%20Zn-based%20flow%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Lee,%20Ju-Hyuk&rft.date=2020-09-16&rft.volume=13&rft.issue=9&rft.spage=2839&rft.epage=2848&rft.pages=2839-2848&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee00723d&rft_dat=%3Cproquest_cross%3E2442838960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-59b3a9d3842f4f8a4549dd2fc7bd80e6a52f164b0ba3d088253cbdcee50811d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442838960&rft_id=info:pmid/&rfr_iscdi=true