Loading…
Phase separation of polymer-bound particles induced by loop-mediated 1D effective long-range interactions
The cellular cytoplasm is organized into compartments. Phase separation is a simple manner to create membrane-less compartments in order to confine and localize particles like proteins. In many cases these particles are bound to fluctuating polymers like DNA or RNA. We propose a general theoretical...
Saved in:
Published in: | arXiv.org 2018-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cellular cytoplasm is organized into compartments. Phase separation is a simple manner to create membrane-less compartments in order to confine and localize particles like proteins. In many cases these particles are bound to fluctuating polymers like DNA or RNA. We propose a general theoretical framework for such polymer-bound particles and derive an effective 1D lattice gas model with both nearest-neighbor and emergent long-range interactions arising from looped configurations of the fluctuating polymer. We argue that 1D phase transitions exist in such systems for both Gaussian and self-avoiding polymers and, using a variational method that goes beyond mean-field theory, we obtain the complete mean occupation-temperature phase diagram. To illustrate this model we apply it to the biologically relevant case of ParABS, a prevalent bacterial DNA segregation system. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1811.09234 |