Loading…

Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms

A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis...

Full description

Saved in:
Bibliographic Details
Published in:Analytical methods 2020-09, Vol.12 (35), p.433-439
Main Authors: Larios, Gustavo, Nicolodelli, Gustavo, Ribeiro, Matheus, Canassa, Thalita, Reis, Andre R, Oliveira, Samuel L, Alves, Charline Z, Marangoni, Bruno S, Cena, Cícero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3
cites cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3
container_end_page 439
container_issue 35
container_start_page 433
container_title Analytical methods
container_volume 12
creator Larios, Gustavo
Nicolodelli, Gustavo
Ribeiro, Matheus
Canassa, Thalita
Reis, Andre R
Oliveira, Samuel L
Alves, Charline Z
Marangoni, Bruno S
Cena, Cícero
description A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor. A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.
doi_str_mv 10.1039/d0ay01238f
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2443378248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438683859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agiu-LdyXiRYTVSZM-clx8w4IH9eCp5lWNtGlNWqHf3qyrK3jwlMD8Zsj8g9AegVMClJ9pECOQhBbVCtokeconPMv56vKewQbaCuENIOM0I-togyZFmgNPN9HzfTtKIxwOxmj8YV9aj7UNytvGOtHb1mE54iFY94Ktq7zwkYXOqN63QbXdiIXTuBHq1TqDayO8m1NRx0G2f23CDlqrRB3M7ve5jR6vLh_Obyazu-vb8-lsohhAP5FKCwbEpAoo8IwlpDKVYIRxyaqMEm0kCC25zrnhMpGUCE0UiNikaSzRbXS8mNv59n0woS-buIapa-FMO4QyYbTIClqkPNKjP_StHbyLr4uKUZoXCSuiOlkoFTcN3lRlF0MRfiwJlPPcywuYPn3lfhXxwffIQTZGL-lP0BEcLoAPaln9_biy01U0-_8Z-gnJZJSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443378248</pqid></control><display><type>article</type><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><source>Royal Society of Chemistry</source><creator>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</creator><creatorcontrib>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</creatorcontrib><description>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor. A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</description><identifier>ISSN: 1759-9660</identifier><identifier>EISSN: 1759-9679</identifier><identifier>DOI: 10.1039/d0ay01238f</identifier><identifier>PMID: 32857095</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Amides ; Discriminant Analysis ; Fatty acids ; Fourier analysis ; Fourier transforms ; Glycine max ; Infrared spectroscopy ; Learning algorithms ; Machine Learning ; Multivariate analysis ; Principal components analysis ; Seeds ; Soybeans ; Spectrum analysis ; Support vector machines ; Vigor</subject><ispartof>Analytical methods, 2020-09, Vol.12 (35), p.433-439</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</citedby><cites>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</cites><orcidid>0000-0001-8766-6144 ; 0000-0003-0890-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32857095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larios, Gustavo</creatorcontrib><creatorcontrib>Nicolodelli, Gustavo</creatorcontrib><creatorcontrib>Ribeiro, Matheus</creatorcontrib><creatorcontrib>Canassa, Thalita</creatorcontrib><creatorcontrib>Reis, Andre R</creatorcontrib><creatorcontrib>Oliveira, Samuel L</creatorcontrib><creatorcontrib>Alves, Charline Z</creatorcontrib><creatorcontrib>Marangoni, Bruno S</creatorcontrib><creatorcontrib>Cena, Cícero</creatorcontrib><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><title>Analytical methods</title><addtitle>Anal Methods</addtitle><description>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor. A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</description><subject>Algorithms</subject><subject>Amides</subject><subject>Discriminant Analysis</subject><subject>Fatty acids</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Glycine max</subject><subject>Infrared spectroscopy</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Multivariate analysis</subject><subject>Principal components analysis</subject><subject>Seeds</subject><subject>Soybeans</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Vigor</subject><issn>1759-9660</issn><issn>1759-9679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_Agiu-LdyXiRYTVSZM-clx8w4IH9eCp5lWNtGlNWqHf3qyrK3jwlMD8Zsj8g9AegVMClJ9pECOQhBbVCtokeconPMv56vKewQbaCuENIOM0I-togyZFmgNPN9HzfTtKIxwOxmj8YV9aj7UNytvGOtHb1mE54iFY94Ktq7zwkYXOqN63QbXdiIXTuBHq1TqDayO8m1NRx0G2f23CDlqrRB3M7ve5jR6vLh_Obyazu-vb8-lsohhAP5FKCwbEpAoo8IwlpDKVYIRxyaqMEm0kCC25zrnhMpGUCE0UiNikaSzRbXS8mNv59n0woS-buIapa-FMO4QyYbTIClqkPNKjP_StHbyLr4uKUZoXCSuiOlkoFTcN3lRlF0MRfiwJlPPcywuYPn3lfhXxwffIQTZGL-lP0BEcLoAPaln9_biy01U0-_8Z-gnJZJSW</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Larios, Gustavo</creator><creator>Nicolodelli, Gustavo</creator><creator>Ribeiro, Matheus</creator><creator>Canassa, Thalita</creator><creator>Reis, Andre R</creator><creator>Oliveira, Samuel L</creator><creator>Alves, Charline Z</creator><creator>Marangoni, Bruno S</creator><creator>Cena, Cícero</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8766-6144</orcidid><orcidid>https://orcid.org/0000-0003-0890-0364</orcidid></search><sort><creationdate>20200917</creationdate><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><author>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amides</topic><topic>Discriminant Analysis</topic><topic>Fatty acids</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Glycine max</topic><topic>Infrared spectroscopy</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Multivariate analysis</topic><topic>Principal components analysis</topic><topic>Seeds</topic><topic>Soybeans</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Vigor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larios, Gustavo</creatorcontrib><creatorcontrib>Nicolodelli, Gustavo</creatorcontrib><creatorcontrib>Ribeiro, Matheus</creatorcontrib><creatorcontrib>Canassa, Thalita</creatorcontrib><creatorcontrib>Reis, Andre R</creatorcontrib><creatorcontrib>Oliveira, Samuel L</creatorcontrib><creatorcontrib>Alves, Charline Z</creatorcontrib><creatorcontrib>Marangoni, Bruno S</creatorcontrib><creatorcontrib>Cena, Cícero</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larios, Gustavo</au><au>Nicolodelli, Gustavo</au><au>Ribeiro, Matheus</au><au>Canassa, Thalita</au><au>Reis, Andre R</au><au>Oliveira, Samuel L</au><au>Alves, Charline Z</au><au>Marangoni, Bruno S</au><au>Cena, Cícero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</atitle><jtitle>Analytical methods</jtitle><addtitle>Anal Methods</addtitle><date>2020-09-17</date><risdate>2020</risdate><volume>12</volume><issue>35</issue><spage>433</spage><epage>439</epage><pages>433-439</pages><issn>1759-9660</issn><eissn>1759-9679</eissn><abstract>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor. A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32857095</pmid><doi>10.1039/d0ay01238f</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8766-6144</orcidid><orcidid>https://orcid.org/0000-0003-0890-0364</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9660
ispartof Analytical methods, 2020-09, Vol.12 (35), p.433-439
issn 1759-9660
1759-9679
language eng
recordid cdi_proquest_journals_2443378248
source Royal Society of Chemistry
subjects Algorithms
Amides
Discriminant Analysis
Fatty acids
Fourier analysis
Fourier transforms
Glycine max
Infrared spectroscopy
Learning algorithms
Machine Learning
Multivariate analysis
Principal components analysis
Seeds
Soybeans
Spectrum analysis
Support vector machines
Vigor
title Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soybean%20seed%20vigor%20discrimination%20by%20using%20infrared%20spectroscopy%20and%20machine%20learning%20algorithms&rft.jtitle=Analytical%20methods&rft.au=Larios,%20Gustavo&rft.date=2020-09-17&rft.volume=12&rft.issue=35&rft.spage=433&rft.epage=439&rft.pages=433-439&rft.issn=1759-9660&rft.eissn=1759-9679&rft_id=info:doi/10.1039/d0ay01238f&rft_dat=%3Cproquest_rsc_p%3E2438683859%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443378248&rft_id=info:pmid/32857095&rfr_iscdi=true