Loading…
Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms
A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis...
Saved in:
Published in: | Analytical methods 2020-09, Vol.12 (35), p.433-439 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3 |
container_end_page | 439 |
container_issue | 35 |
container_start_page | 433 |
container_title | Analytical methods |
container_volume | 12 |
creator | Larios, Gustavo Nicolodelli, Gustavo Ribeiro, Matheus Canassa, Thalita Reis, Andre R Oliveira, Samuel L Alves, Charline Z Marangoni, Bruno S Cena, Cícero |
description | A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor.
A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. |
doi_str_mv | 10.1039/d0ay01238f |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2443378248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438683859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agiu-LdyXiRYTVSZM-clx8w4IH9eCp5lWNtGlNWqHf3qyrK3jwlMD8Zsj8g9AegVMClJ9pECOQhBbVCtokeconPMv56vKewQbaCuENIOM0I-togyZFmgNPN9HzfTtKIxwOxmj8YV9aj7UNytvGOtHb1mE54iFY94Ktq7zwkYXOqN63QbXdiIXTuBHq1TqDayO8m1NRx0G2f23CDlqrRB3M7ve5jR6vLh_Obyazu-vb8-lsohhAP5FKCwbEpAoo8IwlpDKVYIRxyaqMEm0kCC25zrnhMpGUCE0UiNikaSzRbXS8mNv59n0woS-buIapa-FMO4QyYbTIClqkPNKjP_StHbyLr4uKUZoXCSuiOlkoFTcN3lRlF0MRfiwJlPPcywuYPn3lfhXxwffIQTZGL-lP0BEcLoAPaln9_biy01U0-_8Z-gnJZJSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443378248</pqid></control><display><type>article</type><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><source>Royal Society of Chemistry</source><creator>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</creator><creatorcontrib>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</creatorcontrib><description>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor.
A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</description><identifier>ISSN: 1759-9660</identifier><identifier>EISSN: 1759-9679</identifier><identifier>DOI: 10.1039/d0ay01238f</identifier><identifier>PMID: 32857095</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Amides ; Discriminant Analysis ; Fatty acids ; Fourier analysis ; Fourier transforms ; Glycine max ; Infrared spectroscopy ; Learning algorithms ; Machine Learning ; Multivariate analysis ; Principal components analysis ; Seeds ; Soybeans ; Spectrum analysis ; Support vector machines ; Vigor</subject><ispartof>Analytical methods, 2020-09, Vol.12 (35), p.433-439</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</citedby><cites>FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</cites><orcidid>0000-0001-8766-6144 ; 0000-0003-0890-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32857095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larios, Gustavo</creatorcontrib><creatorcontrib>Nicolodelli, Gustavo</creatorcontrib><creatorcontrib>Ribeiro, Matheus</creatorcontrib><creatorcontrib>Canassa, Thalita</creatorcontrib><creatorcontrib>Reis, Andre R</creatorcontrib><creatorcontrib>Oliveira, Samuel L</creatorcontrib><creatorcontrib>Alves, Charline Z</creatorcontrib><creatorcontrib>Marangoni, Bruno S</creatorcontrib><creatorcontrib>Cena, Cícero</creatorcontrib><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><title>Analytical methods</title><addtitle>Anal Methods</addtitle><description>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor.
A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</description><subject>Algorithms</subject><subject>Amides</subject><subject>Discriminant Analysis</subject><subject>Fatty acids</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Glycine max</subject><subject>Infrared spectroscopy</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Multivariate analysis</subject><subject>Principal components analysis</subject><subject>Seeds</subject><subject>Soybeans</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><subject>Vigor</subject><issn>1759-9660</issn><issn>1759-9679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_Agiu-LdyXiRYTVSZM-clx8w4IH9eCp5lWNtGlNWqHf3qyrK3jwlMD8Zsj8g9AegVMClJ9pECOQhBbVCtokeconPMv56vKewQbaCuENIOM0I-togyZFmgNPN9HzfTtKIxwOxmj8YV9aj7UNytvGOtHb1mE54iFY94Ktq7zwkYXOqN63QbXdiIXTuBHq1TqDayO8m1NRx0G2f23CDlqrRB3M7ve5jR6vLh_Obyazu-vb8-lsohhAP5FKCwbEpAoo8IwlpDKVYIRxyaqMEm0kCC25zrnhMpGUCE0UiNikaSzRbXS8mNv59n0woS-buIapa-FMO4QyYbTIClqkPNKjP_StHbyLr4uKUZoXCSuiOlkoFTcN3lRlF0MRfiwJlPPcywuYPn3lfhXxwffIQTZGL-lP0BEcLoAPaln9_biy01U0-_8Z-gnJZJSW</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Larios, Gustavo</creator><creator>Nicolodelli, Gustavo</creator><creator>Ribeiro, Matheus</creator><creator>Canassa, Thalita</creator><creator>Reis, Andre R</creator><creator>Oliveira, Samuel L</creator><creator>Alves, Charline Z</creator><creator>Marangoni, Bruno S</creator><creator>Cena, Cícero</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8766-6144</orcidid><orcidid>https://orcid.org/0000-0003-0890-0364</orcidid></search><sort><creationdate>20200917</creationdate><title>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</title><author>Larios, Gustavo ; Nicolodelli, Gustavo ; Ribeiro, Matheus ; Canassa, Thalita ; Reis, Andre R ; Oliveira, Samuel L ; Alves, Charline Z ; Marangoni, Bruno S ; Cena, Cícero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Amides</topic><topic>Discriminant Analysis</topic><topic>Fatty acids</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Glycine max</topic><topic>Infrared spectroscopy</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Multivariate analysis</topic><topic>Principal components analysis</topic><topic>Seeds</topic><topic>Soybeans</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><topic>Vigor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larios, Gustavo</creatorcontrib><creatorcontrib>Nicolodelli, Gustavo</creatorcontrib><creatorcontrib>Ribeiro, Matheus</creatorcontrib><creatorcontrib>Canassa, Thalita</creatorcontrib><creatorcontrib>Reis, Andre R</creatorcontrib><creatorcontrib>Oliveira, Samuel L</creatorcontrib><creatorcontrib>Alves, Charline Z</creatorcontrib><creatorcontrib>Marangoni, Bruno S</creatorcontrib><creatorcontrib>Cena, Cícero</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larios, Gustavo</au><au>Nicolodelli, Gustavo</au><au>Ribeiro, Matheus</au><au>Canassa, Thalita</au><au>Reis, Andre R</au><au>Oliveira, Samuel L</au><au>Alves, Charline Z</au><au>Marangoni, Bruno S</au><au>Cena, Cícero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms</atitle><jtitle>Analytical methods</jtitle><addtitle>Anal Methods</addtitle><date>2020-09-17</date><risdate>2020</risdate><volume>12</volume><issue>35</issue><spage>433</spage><epage>439</epage><pages>433-439</pages><issn>1759-9660</issn><eissn>1759-9679</eissn><abstract>A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor.
A novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32857095</pmid><doi>10.1039/d0ay01238f</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8766-6144</orcidid><orcidid>https://orcid.org/0000-0003-0890-0364</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-9660 |
ispartof | Analytical methods, 2020-09, Vol.12 (35), p.433-439 |
issn | 1759-9660 1759-9679 |
language | eng |
recordid | cdi_proquest_journals_2443378248 |
source | Royal Society of Chemistry |
subjects | Algorithms Amides Discriminant Analysis Fatty acids Fourier analysis Fourier transforms Glycine max Infrared spectroscopy Learning algorithms Machine Learning Multivariate analysis Principal components analysis Seeds Soybeans Spectrum analysis Support vector machines Vigor |
title | Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soybean%20seed%20vigor%20discrimination%20by%20using%20infrared%20spectroscopy%20and%20machine%20learning%20algorithms&rft.jtitle=Analytical%20methods&rft.au=Larios,%20Gustavo&rft.date=2020-09-17&rft.volume=12&rft.issue=35&rft.spage=433&rft.epage=439&rft.pages=433-439&rft.issn=1759-9660&rft.eissn=1759-9679&rft_id=info:doi/10.1039/d0ay01238f&rft_dat=%3Cproquest_rsc_p%3E2438683859%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-bcda401e5c03096421fefa4149b4f631deb0adb9d79e9b2b31ad1c0aa40d3b0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443378248&rft_id=info:pmid/32857095&rfr_iscdi=true |