Loading…

Largest small polygons: A sequential convex optimization approach

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with \(n=2m\) vertices is not known when \(m\ge 7\). Finding the largest small \(n\)-gon for a given number \(n\ge 3\) can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We prop...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-05
Main Author: Bingane, Christian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bingane, Christian
description A small polygon is a polygon of unit diameter. The maximal area of a small polygon with \(n=2m\) vertices is not known when \(m\ge 7\). Finding the largest small \(n\)-gon for a given number \(n\ge 3\) can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a sequential convex optimization approach, which is an ascent algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons with up to \(n=128\) sides suggest that the optimal solutions obtained are near-global. Indeed, for even \(6 \le n \le 12\), the algorithm proposed in this work converges to known global optimal solutions found in the literature.
doi_str_mv 10.48550/arxiv.2009.07893
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2443962348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443962348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-f2877b104afc44cf7fe9556705f6e974c36d35b3bcaa0c028f76b47d71eb8e103</originalsourceid><addsrcrecordid>eNotjstqwzAQAEWh0JDmA3oT9Gx3rdXLvZnQFxh6yT2sFSl1cCzXckLar6-hOc1tZhh7KCCXVil4ovHSnnMBUOZgbIk3bCEQi8xKIe7YKqUDAAhthFK4YFVN496niacjdR0fYvezj3165hVP_vvk-6mljrvYn_2Fx2Fqj-0vTW3sOQ3DGMl93bPbQF3yqyuXbPP6slm_Z_Xn28e6qjNSwmZBWGOaAiQFJ6ULJvhSKW1ABe1LIx3qHaoGG0cEDoQNRjfS7EzhG-sLwCV7_NfO1fkrTdtDPI39XNwKKbHUAqXFPzX8S-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443962348</pqid></control><display><type>article</type><title>Largest small polygons: A sequential convex optimization approach</title><source>Access via ProQuest (Open Access)</source><creator>Bingane, Christian</creator><creatorcontrib>Bingane, Christian</creatorcontrib><description>A small polygon is a polygon of unit diameter. The maximal area of a small polygon with \(n=2m\) vertices is not known when \(m\ge 7\). Finding the largest small \(n\)-gon for a given number \(n\ge 3\) can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a sequential convex optimization approach, which is an ascent algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons with up to \(n=128\) sides suggest that the optimal solutions obtained are near-global. Indeed, for even \(6 \le n \le 12\), the algorithm proposed in this work converges to known global optimal solutions found in the literature.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.07893</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Apexes ; Ascent ; Computational geometry ; Convergence ; Convex analysis ; Convexity ; Optimization ; Polygons</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2443962348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bingane, Christian</creatorcontrib><title>Largest small polygons: A sequential convex optimization approach</title><title>arXiv.org</title><description>A small polygon is a polygon of unit diameter. The maximal area of a small polygon with \(n=2m\) vertices is not known when \(m\ge 7\). Finding the largest small \(n\)-gon for a given number \(n\ge 3\) can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a sequential convex optimization approach, which is an ascent algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons with up to \(n=128\) sides suggest that the optimal solutions obtained are near-global. Indeed, for even \(6 \le n \le 12\), the algorithm proposed in this work converges to known global optimal solutions found in the literature.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Ascent</subject><subject>Computational geometry</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Optimization</subject><subject>Polygons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstqwzAQAEWh0JDmA3oT9Gx3rdXLvZnQFxh6yT2sFSl1cCzXckLar6-hOc1tZhh7KCCXVil4ovHSnnMBUOZgbIk3bCEQi8xKIe7YKqUDAAhthFK4YFVN496niacjdR0fYvezj3165hVP_vvk-6mljrvYn_2Fx2Fqj-0vTW3sOQ3DGMl93bPbQF3yqyuXbPP6slm_Z_Xn28e6qjNSwmZBWGOaAiQFJ6ULJvhSKW1ABe1LIx3qHaoGG0cEDoQNRjfS7EzhG-sLwCV7_NfO1fkrTdtDPI39XNwKKbHUAqXFPzX8S-U</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Bingane, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220531</creationdate><title>Largest small polygons: A sequential convex optimization approach</title><author>Bingane, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-f2877b104afc44cf7fe9556705f6e974c36d35b3bcaa0c028f76b47d71eb8e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Ascent</topic><topic>Computational geometry</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Optimization</topic><topic>Polygons</topic><toplevel>online_resources</toplevel><creatorcontrib>Bingane, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingane, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Largest small polygons: A sequential convex optimization approach</atitle><jtitle>arXiv.org</jtitle><date>2022-05-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A small polygon is a polygon of unit diameter. The maximal area of a small polygon with \(n=2m\) vertices is not known when \(m\ge 7\). Finding the largest small \(n\)-gon for a given number \(n\ge 3\) can be formulated as a nonconvex quadratically constrained quadratic optimization problem. We propose to solve this problem with a sequential convex optimization approach, which is an ascent algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons with up to \(n=128\) sides suggest that the optimal solutions obtained are near-global. Indeed, for even \(6 \le n \le 12\), the algorithm proposed in this work converges to known global optimal solutions found in the literature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.07893</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2443962348
source Access via ProQuest (Open Access)
subjects Algorithms
Apexes
Ascent
Computational geometry
Convergence
Convex analysis
Convexity
Optimization
Polygons
title Largest small polygons: A sequential convex optimization approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Largest%20small%20polygons:%20A%20sequential%20convex%20optimization%20approach&rft.jtitle=arXiv.org&rft.au=Bingane,%20Christian&rft.date=2022-05-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.07893&rft_dat=%3Cproquest%3E2443962348%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-f2877b104afc44cf7fe9556705f6e974c36d35b3bcaa0c028f76b47d71eb8e103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2443962348&rft_id=info:pmid/&rfr_iscdi=true