Loading…

Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening

Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evoluti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2020-11, Vol.285, p.116806, Article 116806
Main Authors: Tong, Zhaopeng, Liu, Huaile, Jiao, Jiafei, Zhou, Wangfan, Yang, Yu, Ren, Xudong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3
cites cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3
container_end_page
container_issue
container_start_page 116806
container_title Journal of materials processing technology
container_volume 285
creator Tong, Zhaopeng
Liu, Huaile
Jiao, Jiafei
Zhou, Wangfan
Yang, Yu
Ren, Xudong
description Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.
doi_str_mv 10.1016/j.jmatprotec.2020.116806
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444101661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092401362030220X</els_id><sourcerecordid>2444101661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</originalsourceid><addsrcrecordid>eNqFkM9u3CAQh1HVSt0meQekXuMtYDD2MVk1aaT8uSRnhGGcxfXCBnCkfYq8cnE2Uo85jWb0zW80H0KYkjUltPk1rsedzvsYMpg1I6yMadOS5gta0VbWFZeSf0Ur0jFeEVo339GPlEZCqCRtu0Jvd87EkHKcTZ4jnOPd0m91tB5SwtpbHCE5O-sJF2qZhQFPOkHE2lqX3SvgnfbzoN8DLN6ETbyCO3_v8NY9byvwOYb9AetpCgec5n4EkwuXw0dM2gbzF-8BvPPPp-jboKcEZx_1BD1d_X7c_KluH65vNhe3lal5kytpNFBWU90L0QkDgnW8bbQGJpiUhAraM0YFsE7SvjdcdJrYFrToJRecD_UJ-nnMLeZeZkhZjWGOvpxUjHO-qG1oodojtThKEQa1j26n40FRohZGjeq_frXoV0f9ZfXyuArli1cHUSXjwBuwLhYBygb3ecg_2tKWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444101661</pqid></control><display><type>article</type><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><source>ScienceDirect Journals</source><creator>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</creator><creatorcontrib>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</creatorcontrib><description>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2020.116806</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Compressive properties ; Electron backscatter diffraction ; Grain refinement ; High entropy alloys ; High-entropy alloy ; Laser shock peening ; Laser shock processing ; Lasers ; Microhardness ; Microstructure ; Peening ; Performance enhancement ; Plastic deformation ; Residual stress ; Strengthening ; Surface layers ; Tensile stress</subject><ispartof>Journal of materials processing technology, 2020-11, Vol.285, p.116806, Article 116806</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</citedby><cites>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</cites><orcidid>0000-0003-3327-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tong, Zhaopeng</creatorcontrib><creatorcontrib>Liu, Huaile</creatorcontrib><creatorcontrib>Jiao, Jiafei</creatorcontrib><creatorcontrib>Zhou, Wangfan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Ren, Xudong</creatorcontrib><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><title>Journal of materials processing technology</title><description>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</description><subject>Compressive properties</subject><subject>Electron backscatter diffraction</subject><subject>Grain refinement</subject><subject>High entropy alloys</subject><subject>High-entropy alloy</subject><subject>Laser shock peening</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Peening</subject><subject>Performance enhancement</subject><subject>Plastic deformation</subject><subject>Residual stress</subject><subject>Strengthening</subject><subject>Surface layers</subject><subject>Tensile stress</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u3CAQh1HVSt0meQekXuMtYDD2MVk1aaT8uSRnhGGcxfXCBnCkfYq8cnE2Uo85jWb0zW80H0KYkjUltPk1rsedzvsYMpg1I6yMadOS5gta0VbWFZeSf0Ur0jFeEVo339GPlEZCqCRtu0Jvd87EkHKcTZ4jnOPd0m91tB5SwtpbHCE5O-sJF2qZhQFPOkHE2lqX3SvgnfbzoN8DLN6ETbyCO3_v8NY9byvwOYb9AetpCgec5n4EkwuXw0dM2gbzF-8BvPPPp-jboKcEZx_1BD1d_X7c_KluH65vNhe3lal5kytpNFBWU90L0QkDgnW8bbQGJpiUhAraM0YFsE7SvjdcdJrYFrToJRecD_UJ-nnMLeZeZkhZjWGOvpxUjHO-qG1oodojtThKEQa1j26n40FRohZGjeq_frXoV0f9ZfXyuArli1cHUSXjwBuwLhYBygb3ecg_2tKWWA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Tong, Zhaopeng</creator><creator>Liu, Huaile</creator><creator>Jiao, Jiafei</creator><creator>Zhou, Wangfan</creator><creator>Yang, Yu</creator><creator>Ren, Xudong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3327-5417</orcidid></search><sort><creationdate>202011</creationdate><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><author>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Electron backscatter diffraction</topic><topic>Grain refinement</topic><topic>High entropy alloys</topic><topic>High-entropy alloy</topic><topic>Laser shock peening</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Peening</topic><topic>Performance enhancement</topic><topic>Plastic deformation</topic><topic>Residual stress</topic><topic>Strengthening</topic><topic>Surface layers</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Zhaopeng</creatorcontrib><creatorcontrib>Liu, Huaile</creatorcontrib><creatorcontrib>Jiao, Jiafei</creatorcontrib><creatorcontrib>Zhou, Wangfan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Ren, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Zhaopeng</au><au>Liu, Huaile</au><au>Jiao, Jiafei</au><au>Zhou, Wangfan</au><au>Yang, Yu</au><au>Ren, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</atitle><jtitle>Journal of materials processing technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>285</volume><spage>116806</spage><pages>116806-</pages><artnum>116806</artnum><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2020.116806</doi><orcidid>https://orcid.org/0000-0003-3327-5417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2020-11, Vol.285, p.116806, Article 116806
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2444101661
source ScienceDirect Journals
subjects Compressive properties
Electron backscatter diffraction
Grain refinement
High entropy alloys
High-entropy alloy
Laser shock peening
Laser shock processing
Lasers
Microhardness
Microstructure
Peening
Performance enhancement
Plastic deformation
Residual stress
Strengthening
Surface layers
Tensile stress
title Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20microhardness%20and%20residual%20stress%20of%20laser%20additive%20manufactured%20CoCrFeMnNi%20high-entropy%20alloy%20subjected%20to%20laser%20shock%20peening&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Tong,%20Zhaopeng&rft.date=2020-11&rft.volume=285&rft.spage=116806&rft.pages=116806-&rft.artnum=116806&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2020.116806&rft_dat=%3Cproquest_cross%3E2444101661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444101661&rft_id=info:pmid/&rfr_iscdi=true