Loading…
Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening
Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evoluti...
Saved in:
Published in: | Journal of materials processing technology 2020-11, Vol.285, p.116806, Article 116806 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3 |
container_end_page | |
container_issue | |
container_start_page | 116806 |
container_title | Journal of materials processing technology |
container_volume | 285 |
creator | Tong, Zhaopeng Liu, Huaile Jiao, Jiafei Zhou, Wangfan Yang, Yu Ren, Xudong |
description | Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism. |
doi_str_mv | 10.1016/j.jmatprotec.2020.116806 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444101661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092401362030220X</els_id><sourcerecordid>2444101661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</originalsourceid><addsrcrecordid>eNqFkM9u3CAQh1HVSt0meQekXuMtYDD2MVk1aaT8uSRnhGGcxfXCBnCkfYq8cnE2Uo85jWb0zW80H0KYkjUltPk1rsedzvsYMpg1I6yMadOS5gta0VbWFZeSf0Ur0jFeEVo339GPlEZCqCRtu0Jvd87EkHKcTZ4jnOPd0m91tB5SwtpbHCE5O-sJF2qZhQFPOkHE2lqX3SvgnfbzoN8DLN6ETbyCO3_v8NY9byvwOYb9AetpCgec5n4EkwuXw0dM2gbzF-8BvPPPp-jboKcEZx_1BD1d_X7c_KluH65vNhe3lal5kytpNFBWU90L0QkDgnW8bbQGJpiUhAraM0YFsE7SvjdcdJrYFrToJRecD_UJ-nnMLeZeZkhZjWGOvpxUjHO-qG1oodojtThKEQa1j26n40FRohZGjeq_frXoV0f9ZfXyuArli1cHUSXjwBuwLhYBygb3ecg_2tKWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444101661</pqid></control><display><type>article</type><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><source>ScienceDirect Journals</source><creator>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</creator><creatorcontrib>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</creatorcontrib><description>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2020.116806</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Compressive properties ; Electron backscatter diffraction ; Grain refinement ; High entropy alloys ; High-entropy alloy ; Laser shock peening ; Laser shock processing ; Lasers ; Microhardness ; Microstructure ; Peening ; Performance enhancement ; Plastic deformation ; Residual stress ; Strengthening ; Surface layers ; Tensile stress</subject><ispartof>Journal of materials processing technology, 2020-11, Vol.285, p.116806, Article 116806</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</citedby><cites>FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</cites><orcidid>0000-0003-3327-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tong, Zhaopeng</creatorcontrib><creatorcontrib>Liu, Huaile</creatorcontrib><creatorcontrib>Jiao, Jiafei</creatorcontrib><creatorcontrib>Zhou, Wangfan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Ren, Xudong</creatorcontrib><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><title>Journal of materials processing technology</title><description>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</description><subject>Compressive properties</subject><subject>Electron backscatter diffraction</subject><subject>Grain refinement</subject><subject>High entropy alloys</subject><subject>High-entropy alloy</subject><subject>Laser shock peening</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Peening</subject><subject>Performance enhancement</subject><subject>Plastic deformation</subject><subject>Residual stress</subject><subject>Strengthening</subject><subject>Surface layers</subject><subject>Tensile stress</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u3CAQh1HVSt0meQekXuMtYDD2MVk1aaT8uSRnhGGcxfXCBnCkfYq8cnE2Uo85jWb0zW80H0KYkjUltPk1rsedzvsYMpg1I6yMadOS5gta0VbWFZeSf0Ur0jFeEVo339GPlEZCqCRtu0Jvd87EkHKcTZ4jnOPd0m91tB5SwtpbHCE5O-sJF2qZhQFPOkHE2lqX3SvgnfbzoN8DLN6ETbyCO3_v8NY9byvwOYb9AetpCgec5n4EkwuXw0dM2gbzF-8BvPPPp-jboKcEZx_1BD1d_X7c_KluH65vNhe3lal5kytpNFBWU90L0QkDgnW8bbQGJpiUhAraM0YFsE7SvjdcdJrYFrToJRecD_UJ-nnMLeZeZkhZjWGOvpxUjHO-qG1oodojtThKEQa1j26n40FRohZGjeq_frXoV0f9ZfXyuArli1cHUSXjwBuwLhYBygb3ecg_2tKWWA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Tong, Zhaopeng</creator><creator>Liu, Huaile</creator><creator>Jiao, Jiafei</creator><creator>Zhou, Wangfan</creator><creator>Yang, Yu</creator><creator>Ren, Xudong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3327-5417</orcidid></search><sort><creationdate>202011</creationdate><title>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</title><author>Tong, Zhaopeng ; Liu, Huaile ; Jiao, Jiafei ; Zhou, Wangfan ; Yang, Yu ; Ren, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressive properties</topic><topic>Electron backscatter diffraction</topic><topic>Grain refinement</topic><topic>High entropy alloys</topic><topic>High-entropy alloy</topic><topic>Laser shock peening</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Peening</topic><topic>Performance enhancement</topic><topic>Plastic deformation</topic><topic>Residual stress</topic><topic>Strengthening</topic><topic>Surface layers</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Zhaopeng</creatorcontrib><creatorcontrib>Liu, Huaile</creatorcontrib><creatorcontrib>Jiao, Jiafei</creatorcontrib><creatorcontrib>Zhou, Wangfan</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Ren, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Zhaopeng</au><au>Liu, Huaile</au><au>Jiao, Jiafei</au><au>Zhou, Wangfan</au><au>Yang, Yu</au><au>Ren, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening</atitle><jtitle>Journal of materials processing technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>285</volume><spage>116806</spage><pages>116806-</pages><artnum>116806</artnum><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>Laser shock peening (LSP) is a surface modification technology to synthesize nanostructures on the surface layer of materials, thereby improving mechanical performances. In this work, a laser additive manufactured CoCrFeMnNi high-entropy alloy (HEA) is processed using LSP. The microstructure evolution during LSP is investigated via electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. The micro-hardness distributions on cross-sections and subsurface residual stress states as functions of the laser energy are also determined. Results indicate that the LSP results in a thick hardened layer with high microhardness, and transforming the tensile stress in the subsurface into compressive stress. The microstructure apparently refines because of the formation of nanoscale grains on the surface after LSP. A novel grain refinement mechanism under ultra-high plastic strain is proposed. Surface strengthening modes are proposed to describe the relationship between strengthening behaviors and microstructure characteristics, thereby revealing the strengthening mechanism.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2020.116806</doi><orcidid>https://orcid.org/0000-0003-3327-5417</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2020-11, Vol.285, p.116806, Article 116806 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_proquest_journals_2444101661 |
source | ScienceDirect Journals |
subjects | Compressive properties Electron backscatter diffraction Grain refinement High entropy alloys High-entropy alloy Laser shock peening Laser shock processing Lasers Microhardness Microstructure Peening Performance enhancement Plastic deformation Residual stress Strengthening Surface layers Tensile stress |
title | Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20microhardness%20and%20residual%20stress%20of%20laser%20additive%20manufactured%20CoCrFeMnNi%20high-entropy%20alloy%20subjected%20to%20laser%20shock%20peening&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Tong,%20Zhaopeng&rft.date=2020-11&rft.volume=285&rft.spage=116806&rft.pages=116806-&rft.artnum=116806&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2020.116806&rft_dat=%3Cproquest_cross%3E2444101661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-7cae1231ab5595ce529486aae252770151b2215e2971bbc459a0d8ea5b74544f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444101661&rft_id=info:pmid/&rfr_iscdi=true |