Loading…
Real-space multiple scattering theory for superconductors with impurities
We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply t...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Saunderson, Tom G Győrgypál, Zsolt Annett, James F Csire, Gábor Újfalussy, Balázs Gradhand, Martin |
description | We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of non-magnetic impurities those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations we examine superconducting clusters embedded within a non-superconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory. |
doi_str_mv | 10.48550/arxiv.2009.08766 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2444450463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444450463</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-b2c38d63faa45068919d736e99b0cfbc89329bd51fdceeb2f0e9befeb0523ffa3</originalsourceid><addsrcrecordid>eNotjclqwzAURUWh0JDmA7oTdG33WbJka1lCh0CgULIPkvzUKDiWq6HD3zfQ3M1ZnXMJuWugbnsh4EHHH_9VMwBVQ99JeUUWjPOm6lvGbsgqpSMAMNkxIfiCbN5Rj1WatUV6KmP284g0WZ0zRj990HzAEH-pC5GmMmO0YRqKzSEm-u3zgfrTXKLPHtMtuXZ6TLi6cEl2z0-79Wu1fXvZrB-3lRaMV4ZZ3g-SO61bAbJXjRo6LlEpA9YZ2yvOlBlE4waLaJgDVAYdGjjbzmm-JPf_2TmGz4Ip74-hxOn8uGfteQJayfkfritQlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444450463</pqid></control><display><type>article</type><title>Real-space multiple scattering theory for superconductors with impurities</title><source>Publicly Available Content Database</source><creator>Saunderson, Tom G ; Győrgypál, Zsolt ; Annett, James F ; Csire, Gábor ; Újfalussy, Balázs ; Gradhand, Martin</creator><creatorcontrib>Saunderson, Tom G ; Győrgypál, Zsolt ; Annett, James F ; Csire, Gábor ; Újfalussy, Balázs ; Gradhand, Martin</creatorcontrib><description>We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of non-magnetic impurities those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations we examine superconducting clusters embedded within a non-superconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.08766</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>BCS theory ; Coherence length ; Crystal structure ; Electrons ; Multiple scatter ; Substitutional impurities ; Superconductivity</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2444450463?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Saunderson, Tom G</creatorcontrib><creatorcontrib>Győrgypál, Zsolt</creatorcontrib><creatorcontrib>Annett, James F</creatorcontrib><creatorcontrib>Csire, Gábor</creatorcontrib><creatorcontrib>Újfalussy, Balázs</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><title>Real-space multiple scattering theory for superconductors with impurities</title><title>arXiv.org</title><description>We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of non-magnetic impurities those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations we examine superconducting clusters embedded within a non-superconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory.</description><subject>BCS theory</subject><subject>Coherence length</subject><subject>Crystal structure</subject><subject>Electrons</subject><subject>Multiple scatter</subject><subject>Substitutional impurities</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjclqwzAURUWh0JDmA7oTdG33WbJka1lCh0CgULIPkvzUKDiWq6HD3zfQ3M1ZnXMJuWugbnsh4EHHH_9VMwBVQ99JeUUWjPOm6lvGbsgqpSMAMNkxIfiCbN5Rj1WatUV6KmP284g0WZ0zRj990HzAEH-pC5GmMmO0YRqKzSEm-u3zgfrTXKLPHtMtuXZ6TLi6cEl2z0-79Wu1fXvZrB-3lRaMV4ZZ3g-SO61bAbJXjRo6LlEpA9YZ2yvOlBlE4waLaJgDVAYdGjjbzmm-JPf_2TmGz4Ip74-hxOn8uGfteQJayfkfritQlw</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Saunderson, Tom G</creator><creator>Győrgypál, Zsolt</creator><creator>Annett, James F</creator><creator>Csire, Gábor</creator><creator>Újfalussy, Balázs</creator><creator>Gradhand, Martin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200918</creationdate><title>Real-space multiple scattering theory for superconductors with impurities</title><author>Saunderson, Tom G ; Győrgypál, Zsolt ; Annett, James F ; Csire, Gábor ; Újfalussy, Balázs ; Gradhand, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-b2c38d63faa45068919d736e99b0cfbc89329bd51fdceeb2f0e9befeb0523ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BCS theory</topic><topic>Coherence length</topic><topic>Crystal structure</topic><topic>Electrons</topic><topic>Multiple scatter</topic><topic>Substitutional impurities</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Saunderson, Tom G</creatorcontrib><creatorcontrib>Győrgypál, Zsolt</creatorcontrib><creatorcontrib>Annett, James F</creatorcontrib><creatorcontrib>Csire, Gábor</creatorcontrib><creatorcontrib>Újfalussy, Balázs</creatorcontrib><creatorcontrib>Gradhand, Martin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunderson, Tom G</au><au>Győrgypál, Zsolt</au><au>Annett, James F</au><au>Csire, Gábor</au><au>Újfalussy, Balázs</au><au>Gradhand, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-space multiple scattering theory for superconductors with impurities</atitle><jtitle>arXiv.org</jtitle><date>2020-09-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We implement the Bogoliubov-de Gennes (BdG) equation in real-space using the screened Korringa-Kohn-Rostoker (KKR) method. This allows us to solve, self-consistently, the superconducting state for 3d crystals including substitutional impurities with a full normal-state DFT band structure. We apply the theoretical framework to bulk Nb with impurities. Without impurities, Nb has an anisotropic gap structure with two distinct peaks around the Fermi level. In the presence of non-magnetic impurities those peaks are broadened due to the scattering between the two bulk superconducting gaps, however the peaks remain separated. As a second example of self-consistent real-space solutions of the BdG equations we examine superconducting clusters embedded within a non-superconducting bulk metallic host. This allows us to estimate the coherence length of the superconductor and we show that, within our framework, the coherence length of the superconductor is related to the inverse of the gap size, just as in bulk BCS theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.08766</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2444450463 |
source | Publicly Available Content Database |
subjects | BCS theory Coherence length Crystal structure Electrons Multiple scatter Substitutional impurities Superconductivity |
title | Real-space multiple scattering theory for superconductors with impurities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-space%20multiple%20scattering%20theory%20for%20superconductors%20with%20impurities&rft.jtitle=arXiv.org&rft.au=Saunderson,%20Tom%20G&rft.date=2020-09-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.08766&rft_dat=%3Cproquest%3E2444450463%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-b2c38d63faa45068919d736e99b0cfbc89329bd51fdceeb2f0e9befeb0523ffa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444450463&rft_id=info:pmid/&rfr_iscdi=true |