Loading…
A note on optimal designs for estimating the slope of a polynomial regression
In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval \([0, a]\) and characterize those values o...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dette, Holger Melas, Viatcheslav B Shpilev, Petr |
description | In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval \([0, a]\) and characterize those values of \(z\), where an explicit solution of the optimal design is possible. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2444451093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444451093</sourcerecordid><originalsourceid>FETCH-proquest_journals_24444510933</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMgWLTvsOC5kCatP0cRxYs376Xgtk1JszGbHnx7I_gAzmVg5ptZiExpXRaHSqmVyJlHKaXa7VVd60zcT-AoIpAD8tFMrYUnsukdQ0cBkL9ZNK6HOCCwJZ_YDlrwZN-OJpMGAfuAzIbcRiy71jLmP1-L7fXyON8KH-g1p7NmpDm4VDWqSqpLedT6P-oDih097A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444451093</pqid></control><display><type>article</type><title>A note on optimal designs for estimating the slope of a polynomial regression</title><source>Publicly Available Content Database</source><creator>Dette, Holger ; Melas, Viatcheslav B ; Shpilev, Petr</creator><creatorcontrib>Dette, Holger ; Melas, Viatcheslav B ; Shpilev, Petr</creatorcontrib><description>In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval \([0, a]\) and characterize those values of \(z\), where an explicit solution of the optimal design is possible.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Design optimization ; Estimation ; Polynomials</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2444451093?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><title>A note on optimal designs for estimating the slope of a polynomial regression</title><title>arXiv.org</title><description>In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval \([0, a]\) and characterize those values of \(z\), where an explicit solution of the optimal design is possible.</description><subject>Design optimization</subject><subject>Estimation</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjM0KwjAQhIMgWLTvsOC5kCatP0cRxYs376Xgtk1JszGbHnx7I_gAzmVg5ptZiExpXRaHSqmVyJlHKaXa7VVd60zcT-AoIpAD8tFMrYUnsukdQ0cBkL9ZNK6HOCCwJZ_YDlrwZN-OJpMGAfuAzIbcRiy71jLmP1-L7fXyON8KH-g1p7NmpDm4VDWqSqpLedT6P-oDih097A</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Dette, Holger</creator><creator>Melas, Viatcheslav B</creator><creator>Shpilev, Petr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200918</creationdate><title>A note on optimal designs for estimating the slope of a polynomial regression</title><author>Dette, Holger ; Melas, Viatcheslav B ; Shpilev, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24444510933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Design optimization</topic><topic>Estimation</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Melas, Viatcheslav B</creatorcontrib><creatorcontrib>Shpilev, Petr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dette, Holger</au><au>Melas, Viatcheslav B</au><au>Shpilev, Petr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A note on optimal designs for estimating the slope of a polynomial regression</atitle><jtitle>arXiv.org</jtitle><date>2020-09-18</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the interval \([0, a]\) and characterize those values of \(z\), where an explicit solution of the optimal design is possible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2444451093 |
source | Publicly Available Content Database |
subjects | Design optimization Estimation Polynomials |
title | A note on optimal designs for estimating the slope of a polynomial regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20note%20on%20optimal%20designs%20for%20estimating%20the%20slope%20of%20a%20polynomial%20regression&rft.jtitle=arXiv.org&rft.au=Dette,%20Holger&rft.date=2020-09-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2444451093%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24444510933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444451093&rft_id=info:pmid/&rfr_iscdi=true |