Loading…
Symmetrizable matrices, quotients, and the trace problem
Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of...
Saved in:
Published in: | Linear algebra and its applications 2020-09, Vol.600, p.60-81 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743 |
container_end_page | 81 |
container_issue | |
container_start_page | 60 |
container_title | Linear algebra and its applications |
container_volume | 600 |
creator | McKee, James Smyth, Chris |
description | Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases. |
doi_str_mv | 10.1016/j.laa.2020.04.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444673845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520301919</els_id><sourcerecordid>2444673845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edySabFE9S_AcFD-o5ZJMp7tLttkkq1E9vSj17mnd4b97Mj7FrhAoBm7u-WllbceBQgagAZidsglrVJWrZnLIJABdlrWbynF3E2AOAUMAnTL_vh4FS6H5su6JisFk6irfFdjemjtYpS7v2RfqiIgXrqNiEMTuHS3a2tKtIV39zyj6fHj_mL-Xi7fl1_rAoXc1lKqXX5BV3Eh1vG5RLrzXMwANx5Vr0nFsvoOEKrfAzRMt125CXBKg4KlFP2c1xb-7d7igm04-7sM6VhgshGlVrIbMLjy4XxhgDLc0mdIMNe4NgDoBMbzIgcwBkQJgMKGfujxnK5393FEx0-WNHvgvkkvFj90_6F1ixbE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673845</pqid></control><display><type>article</type><title>Symmetrizable matrices, quotients, and the trace problem</title><source>ScienceDirect Freedom Collection</source><creator>McKee, James ; Smyth, Chris</creator><creatorcontrib>McKee, James ; Smyth, Chris</creatorcontrib><description>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.04.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Combinatorial analysis ; Eigenvalues ; Equitable partitions ; Integers ; Linear algebra ; Mathematical analysis ; Matrix methods ; Number theory ; Partitions (mathematics) ; Quotients ; Symmetrizable matrices ; Trace problem</subject><ispartof>Linear algebra and its applications, 2020-09, Vol.600, p.60-81</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</citedby><cites>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</cites><orcidid>0000-0002-6686-0762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>McKee, James</creatorcontrib><creatorcontrib>Smyth, Chris</creatorcontrib><title>Symmetrizable matrices, quotients, and the trace problem</title><title>Linear algebra and its applications</title><description>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Equitable partitions</subject><subject>Integers</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Number theory</subject><subject>Partitions (mathematics)</subject><subject>Quotients</subject><subject>Symmetrizable matrices</subject><subject>Trace problem</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edySabFE9S_AcFD-o5ZJMp7tLttkkq1E9vSj17mnd4b97Mj7FrhAoBm7u-WllbceBQgagAZidsglrVJWrZnLIJABdlrWbynF3E2AOAUMAnTL_vh4FS6H5su6JisFk6irfFdjemjtYpS7v2RfqiIgXrqNiEMTuHS3a2tKtIV39zyj6fHj_mL-Xi7fl1_rAoXc1lKqXX5BV3Eh1vG5RLrzXMwANx5Vr0nFsvoOEKrfAzRMt125CXBKg4KlFP2c1xb-7d7igm04-7sM6VhgshGlVrIbMLjy4XxhgDLc0mdIMNe4NgDoBMbzIgcwBkQJgMKGfujxnK5393FEx0-WNHvgvkkvFj90_6F1ixbE4</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>McKee, James</creator><creator>Smyth, Chris</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6686-0762</orcidid></search><sort><creationdate>20200901</creationdate><title>Symmetrizable matrices, quotients, and the trace problem</title><author>McKee, James ; Smyth, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Equitable partitions</topic><topic>Integers</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Number theory</topic><topic>Partitions (mathematics)</topic><topic>Quotients</topic><topic>Symmetrizable matrices</topic><topic>Trace problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKee, James</creatorcontrib><creatorcontrib>Smyth, Chris</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKee, James</au><au>Smyth, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetrizable matrices, quotients, and the trace problem</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>600</volume><spage>60</spage><epage>81</epage><pages>60-81</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.04.009</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6686-0762</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2020-09, Vol.600, p.60-81 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2444673845 |
source | ScienceDirect Freedom Collection |
subjects | Combinatorial analysis Eigenvalues Equitable partitions Integers Linear algebra Mathematical analysis Matrix methods Number theory Partitions (mathematics) Quotients Symmetrizable matrices Trace problem |
title | Symmetrizable matrices, quotients, and the trace problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetrizable%20matrices,%20quotients,%20and%20the%20trace%20problem&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=McKee,%20James&rft.date=2020-09-01&rft.volume=600&rft.spage=60&rft.epage=81&rft.pages=60-81&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.04.009&rft_dat=%3Cproquest_cross%3E2444673845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444673845&rft_id=info:pmid/&rfr_iscdi=true |