Loading…

Symmetrizable matrices, quotients, and the trace problem

Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2020-09, Vol.600, p.60-81
Main Authors: McKee, James, Smyth, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743
cites cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743
container_end_page 81
container_issue
container_start_page 60
container_title Linear algebra and its applications
container_volume 600
creator McKee, James
Smyth, Chris
description Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.
doi_str_mv 10.1016/j.laa.2020.04.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2444673845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520301919</els_id><sourcerecordid>2444673845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edySabFE9S_AcFD-o5ZJMp7tLttkkq1E9vSj17mnd4b97Mj7FrhAoBm7u-WllbceBQgagAZidsglrVJWrZnLIJABdlrWbynF3E2AOAUMAnTL_vh4FS6H5su6JisFk6irfFdjemjtYpS7v2RfqiIgXrqNiEMTuHS3a2tKtIV39zyj6fHj_mL-Xi7fl1_rAoXc1lKqXX5BV3Eh1vG5RLrzXMwANx5Vr0nFsvoOEKrfAzRMt125CXBKg4KlFP2c1xb-7d7igm04-7sM6VhgshGlVrIbMLjy4XxhgDLc0mdIMNe4NgDoBMbzIgcwBkQJgMKGfujxnK5393FEx0-WNHvgvkkvFj90_6F1ixbE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444673845</pqid></control><display><type>article</type><title>Symmetrizable matrices, quotients, and the trace problem</title><source>ScienceDirect Freedom Collection</source><creator>McKee, James ; Smyth, Chris</creator><creatorcontrib>McKee, James ; Smyth, Chris</creatorcontrib><description>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.04.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Combinatorial analysis ; Eigenvalues ; Equitable partitions ; Integers ; Linear algebra ; Mathematical analysis ; Matrix methods ; Number theory ; Partitions (mathematics) ; Quotients ; Symmetrizable matrices ; Trace problem</subject><ispartof>Linear algebra and its applications, 2020-09, Vol.600, p.60-81</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</citedby><cites>FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</cites><orcidid>0000-0002-6686-0762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>McKee, James</creatorcontrib><creatorcontrib>Smyth, Chris</creatorcontrib><title>Symmetrizable matrices, quotients, and the trace problem</title><title>Linear algebra and its applications</title><description>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Equitable partitions</subject><subject>Integers</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Number theory</subject><subject>Partitions (mathematics)</subject><subject>Quotients</subject><subject>Symmetrizable matrices</subject><subject>Trace problem</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edySabFE9S_AcFD-o5ZJMp7tLttkkq1E9vSj17mnd4b97Mj7FrhAoBm7u-WllbceBQgagAZidsglrVJWrZnLIJABdlrWbynF3E2AOAUMAnTL_vh4FS6H5su6JisFk6irfFdjemjtYpS7v2RfqiIgXrqNiEMTuHS3a2tKtIV39zyj6fHj_mL-Xi7fl1_rAoXc1lKqXX5BV3Eh1vG5RLrzXMwANx5Vr0nFsvoOEKrfAzRMt125CXBKg4KlFP2c1xb-7d7igm04-7sM6VhgshGlVrIbMLjy4XxhgDLc0mdIMNe4NgDoBMbzIgcwBkQJgMKGfujxnK5393FEx0-WNHvgvkkvFj90_6F1ixbE4</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>McKee, James</creator><creator>Smyth, Chris</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6686-0762</orcidid></search><sort><creationdate>20200901</creationdate><title>Symmetrizable matrices, quotients, and the trace problem</title><author>McKee, James ; Smyth, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Equitable partitions</topic><topic>Integers</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Number theory</topic><topic>Partitions (mathematics)</topic><topic>Quotients</topic><topic>Symmetrizable matrices</topic><topic>Trace problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKee, James</creatorcontrib><creatorcontrib>Smyth, Chris</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKee, James</au><au>Smyth, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetrizable matrices, quotients, and the trace problem</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>600</volume><spage>60</spage><epage>81</epage><pages>60-81</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Symmetrizable matrices are those that are a real diagonal change of basis away from being symmetric. Restricting to matrices that have integer entries (symmetrizable integer matrices — SIMs) we enter the worlds of combinatorics and number theory. It is known that quotients of equitable partitions of graphs provide examples of SIMs (with all entries nonnegative). We note a converse result, that every SIM comes from a quotient of an equitable partition of a signed graph (in the nonnegative case, a graph). There is a beautiful well-known combinatorial description of SIMs, which leads to a necessary combinatorial/number-theoretic property of their symmetrizations. We show that this property in fact classifies the matrices that are symmetrizations of SIMs. We then turn to the trace problem for totally positive algebraic integers. The analogous problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was recently solved. We extend this to SIMs, showing that if A is a connected positive definite n×n SIM, then tr(A)≥2n−1, and that if equality holds then A must in fact be symmetric. We explore the structure of minimal-trace examples, in both the symmetric and asymmetric cases.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.04.009</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6686-0762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-09, Vol.600, p.60-81
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2444673845
source ScienceDirect Freedom Collection
subjects Combinatorial analysis
Eigenvalues
Equitable partitions
Integers
Linear algebra
Mathematical analysis
Matrix methods
Number theory
Partitions (mathematics)
Quotients
Symmetrizable matrices
Trace problem
title Symmetrizable matrices, quotients, and the trace problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetrizable%20matrices,%20quotients,%20and%20the%20trace%20problem&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=McKee,%20James&rft.date=2020-09-01&rft.volume=600&rft.spage=60&rft.epage=81&rft.pages=60-81&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.04.009&rft_dat=%3Cproquest_cross%3E2444673845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-5d8ed72c51c2b615fd88090d0e27cb1d22ad406271a4d911a28b6ed5e01721743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444673845&rft_id=info:pmid/&rfr_iscdi=true