Loading…

A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)

S. Gersten announced an algorithm that takes as input two finite sequences \(\vec K=(K_1,\dots, K_N)\) and \(\vec K'=(K_1',\dots, K_N')\) of conjugacy classes of finitely generated subgroups of \(F_n\) and outputs: (1) \(\mathsf{YES}\) or \(\mathsf{NO}\) depending on whether or not th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Bestvina, Mladen, Feighn, Mark, Handel, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bestvina, Mladen
Feighn, Mark
Handel, Michael
description S. Gersten announced an algorithm that takes as input two finite sequences \(\vec K=(K_1,\dots, K_N)\) and \(\vec K'=(K_1',\dots, K_N')\) of conjugacy classes of finitely generated subgroups of \(F_n\) and outputs: (1) \(\mathsf{YES}\) or \(\mathsf{NO}\) depending on whether or not there is an element \(\theta\in \mathsf{Out}(F_n)\) such that \(\theta(\vec K)=\vec K'\) together with one such \(\theta\) if it exists and (2) a finite presentation for the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\). S. Kalajdžievski published a verification of this algorithm. We present a different algorithm from the point of view of Culler-Vogtmann's Outer space. New results include that the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\) is of type \(\mathsf{VF}\), an equivariant version of these results, an application, and a unified approach to such questions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2444744997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444744997</sourcerecordid><originalsourceid>FETCH-proquest_journals_24447449973</originalsourceid><addsrcrecordid>eNqNyssKgkAUgOEhCJLyHQ600YVg45i5DEnaRJsgAkEsz3hBHZvLQqJ3r0UP0OpffP-MWDQINt6OUbogtlKt7_t0G9EwDCxy28PpkQjRwbVuNNZYlKCnEUHXKCT2wIUE3gxf6yaocEBZaCxBmXslhRkVCA6Zk_WFrhV_nY1-O2k-uJm7InNedArtX5dknR4uydEbpXgaVDpvhZHDl3LKGIsYi-Mo-O_6AKFPQeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444744997</pqid></control><display><type>article</type><title>A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)</title><source>Publicly Available Content (ProQuest)</source><creator>Bestvina, Mladen ; Feighn, Mark ; Handel, Michael</creator><creatorcontrib>Bestvina, Mladen ; Feighn, Mark ; Handel, Michael</creatorcontrib><description>S. Gersten announced an algorithm that takes as input two finite sequences \(\vec K=(K_1,\dots, K_N)\) and \(\vec K'=(K_1',\dots, K_N')\) of conjugacy classes of finitely generated subgroups of \(F_n\) and outputs: (1) \(\mathsf{YES}\) or \(\mathsf{NO}\) depending on whether or not there is an element \(\theta\in \mathsf{Out}(F_n)\) such that \(\theta(\vec K)=\vec K'\) together with one such \(\theta\) if it exists and (2) a finite presentation for the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\). S. Kalajdžievski published a verification of this algorithm. We present a different algorithm from the point of view of Culler-Vogtmann's Outer space. New results include that the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\) is of type \(\mathsf{VF}\), an equivariant version of these results, an application, and a unified approach to such questions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Fixing ; Subgroups</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2444744997?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bestvina, Mladen</creatorcontrib><creatorcontrib>Feighn, Mark</creatorcontrib><creatorcontrib>Handel, Michael</creatorcontrib><title>A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)</title><title>arXiv.org</title><description>S. Gersten announced an algorithm that takes as input two finite sequences \(\vec K=(K_1,\dots, K_N)\) and \(\vec K'=(K_1',\dots, K_N')\) of conjugacy classes of finitely generated subgroups of \(F_n\) and outputs: (1) \(\mathsf{YES}\) or \(\mathsf{NO}\) depending on whether or not there is an element \(\theta\in \mathsf{Out}(F_n)\) such that \(\theta(\vec K)=\vec K'\) together with one such \(\theta\) if it exists and (2) a finite presentation for the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\). S. Kalajdžievski published a verification of this algorithm. We present a different algorithm from the point of view of Culler-Vogtmann's Outer space. New results include that the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\) is of type \(\mathsf{VF}\), an equivariant version of these results, an application, and a unified approach to such questions.</description><subject>Algorithms</subject><subject>Fixing</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyssKgkAUgOEhCJLyHQ600YVg45i5DEnaRJsgAkEsz3hBHZvLQqJ3r0UP0OpffP-MWDQINt6OUbogtlKt7_t0G9EwDCxy28PpkQjRwbVuNNZYlKCnEUHXKCT2wIUE3gxf6yaocEBZaCxBmXslhRkVCA6Zk_WFrhV_nY1-O2k-uJm7InNedArtX5dknR4uydEbpXgaVDpvhZHDl3LKGIsYi-Mo-O_6AKFPQeY</recordid><startdate>20221026</startdate><enddate>20221026</enddate><creator>Bestvina, Mladen</creator><creator>Feighn, Mark</creator><creator>Handel, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221026</creationdate><title>A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)</title><author>Bestvina, Mladen ; Feighn, Mark ; Handel, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24447449973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Fixing</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Bestvina, Mladen</creatorcontrib><creatorcontrib>Feighn, Mark</creatorcontrib><creatorcontrib>Handel, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestvina, Mladen</au><au>Feighn, Mark</au><au>Handel, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)</atitle><jtitle>arXiv.org</jtitle><date>2022-10-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>S. Gersten announced an algorithm that takes as input two finite sequences \(\vec K=(K_1,\dots, K_N)\) and \(\vec K'=(K_1',\dots, K_N')\) of conjugacy classes of finitely generated subgroups of \(F_n\) and outputs: (1) \(\mathsf{YES}\) or \(\mathsf{NO}\) depending on whether or not there is an element \(\theta\in \mathsf{Out}(F_n)\) such that \(\theta(\vec K)=\vec K'\) together with one such \(\theta\) if it exists and (2) a finite presentation for the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\). S. Kalajdžievski published a verification of this algorithm. We present a different algorithm from the point of view of Culler-Vogtmann's Outer space. New results include that the subgroup of \(\mathsf{Out}(F_n)\) fixing \(\vec K\) is of type \(\mathsf{VF}\), an equivariant version of these results, an application, and a unified approach to such questions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2444744997
source Publicly Available Content (ProQuest)
subjects Algorithms
Fixing
Subgroups
title A McCool Whitehead type theorem for finitely generated subgroups of \(\mathsf{Out}(F_n)\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20McCool%20Whitehead%20type%20theorem%20for%20finitely%20generated%20subgroups%20of%20%5C(%5Cmathsf%7BOut%7D(F_n)%5C)&rft.jtitle=arXiv.org&rft.au=Bestvina,%20Mladen&rft.date=2022-10-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2444744997%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24447449973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444744997&rft_id=info:pmid/&rfr_iscdi=true