Loading…
Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling
Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic eva...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cattan, Arie Eirew, Alon Stanovsky, Gabriel Joshi, Mandar Dagan, Ido |
description | Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2445795436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445795436</sourcerecordid><originalsourceid>FETCH-proquest_journals_24457954363</originalsourceid><addsrcrecordid>eNqNjMsKgkAYRocgSMp3GGgt2Fy02poRRJtyL4P-ijLOX3Pp-TPoAVp9B87hW5CIcb5L9oKxFYmdG9M0ZVnOpOQRuT68BTXpwQymp4VF55ITNmEC42mBFjqwYBqgd3Cogx_QHGn5VjqoL1NlWnrDFuaDfkOWndIO4t-uyfZcVsUleVp8BXC-HjFYM6uaCSHzgxQ84_9VH064PZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445795436</pqid></control><display><type>article</type><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><source>Publicly Available Content (ProQuest)</source><creator>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</creator><creatorcontrib>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</creatorcontrib><description>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Streamlining</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445795436?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Cattan, Arie</creatorcontrib><creatorcontrib>Eirew, Alon</creatorcontrib><creatorcontrib>Stanovsky, Gabriel</creatorcontrib><creatorcontrib>Joshi, Mandar</creatorcontrib><creatorcontrib>Dagan, Ido</creatorcontrib><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><title>arXiv.org</title><description>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</description><subject>Streamlining</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKgkAYRocgSMp3GGgt2Fy02poRRJtyL4P-ijLOX3Pp-TPoAVp9B87hW5CIcb5L9oKxFYmdG9M0ZVnOpOQRuT68BTXpwQymp4VF55ITNmEC42mBFjqwYBqgd3Cogx_QHGn5VjqoL1NlWnrDFuaDfkOWndIO4t-uyfZcVsUleVp8BXC-HjFYM6uaCSHzgxQ84_9VH064PZ4</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Cattan, Arie</creator><creator>Eirew, Alon</creator><creator>Stanovsky, Gabriel</creator><creator>Joshi, Mandar</creator><creator>Dagan, Ido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201023</creationdate><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><author>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24457954363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Streamlining</topic><toplevel>online_resources</toplevel><creatorcontrib>Cattan, Arie</creatorcontrib><creatorcontrib>Eirew, Alon</creatorcontrib><creatorcontrib>Stanovsky, Gabriel</creatorcontrib><creatorcontrib>Joshi, Mandar</creatorcontrib><creatorcontrib>Dagan, Ido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cattan, Arie</au><au>Eirew, Alon</au><au>Stanovsky, Gabriel</au><au>Joshi, Mandar</au><au>Dagan, Ido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</atitle><jtitle>arXiv.org</jtitle><date>2020-10-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2445795436 |
source | Publicly Available Content (ProQuest) |
subjects | Streamlining |
title | Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Streamlining%20Cross-Document%20Coreference%20Resolution:%20Evaluation%20and%20Modeling&rft.jtitle=arXiv.org&rft.au=Cattan,%20Arie&rft.date=2020-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2445795436%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24457954363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445795436&rft_id=info:pmid/&rfr_iscdi=true |