Loading…

Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling

Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic eva...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-10
Main Authors: Cattan, Arie, Eirew, Alon, Stanovsky, Gabriel, Joshi, Mandar, Dagan, Ido
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cattan, Arie
Eirew, Alon
Stanovsky, Gabriel
Joshi, Mandar
Dagan, Ido
description Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2445795436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445795436</sourcerecordid><originalsourceid>FETCH-proquest_journals_24457954363</originalsourceid><addsrcrecordid>eNqNjMsKgkAYRocgSMp3GGgt2Fy02poRRJtyL4P-ijLOX3Pp-TPoAVp9B87hW5CIcb5L9oKxFYmdG9M0ZVnOpOQRuT68BTXpwQymp4VF55ITNmEC42mBFjqwYBqgd3Cogx_QHGn5VjqoL1NlWnrDFuaDfkOWndIO4t-uyfZcVsUleVp8BXC-HjFYM6uaCSHzgxQ84_9VH064PZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445795436</pqid></control><display><type>article</type><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><source>Publicly Available Content (ProQuest)</source><creator>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</creator><creatorcontrib>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</creatorcontrib><description>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Streamlining</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445795436?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Cattan, Arie</creatorcontrib><creatorcontrib>Eirew, Alon</creatorcontrib><creatorcontrib>Stanovsky, Gabriel</creatorcontrib><creatorcontrib>Joshi, Mandar</creatorcontrib><creatorcontrib>Dagan, Ido</creatorcontrib><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><title>arXiv.org</title><description>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</description><subject>Streamlining</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKgkAYRocgSMp3GGgt2Fy02poRRJtyL4P-ijLOX3Pp-TPoAVp9B87hW5CIcb5L9oKxFYmdG9M0ZVnOpOQRuT68BTXpwQymp4VF55ITNmEC42mBFjqwYBqgd3Cogx_QHGn5VjqoL1NlWnrDFuaDfkOWndIO4t-uyfZcVsUleVp8BXC-HjFYM6uaCSHzgxQ84_9VH064PZ4</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Cattan, Arie</creator><creator>Eirew, Alon</creator><creator>Stanovsky, Gabriel</creator><creator>Joshi, Mandar</creator><creator>Dagan, Ido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201023</creationdate><title>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</title><author>Cattan, Arie ; Eirew, Alon ; Stanovsky, Gabriel ; Joshi, Mandar ; Dagan, Ido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24457954363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Streamlining</topic><toplevel>online_resources</toplevel><creatorcontrib>Cattan, Arie</creatorcontrib><creatorcontrib>Eirew, Alon</creatorcontrib><creatorcontrib>Stanovsky, Gabriel</creatorcontrib><creatorcontrib>Joshi, Mandar</creatorcontrib><creatorcontrib>Dagan, Ido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cattan, Arie</au><au>Eirew, Alon</au><au>Stanovsky, Gabriel</au><au>Joshi, Mandar</au><au>Dagan, Ido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling</atitle><jtitle>arXiv.org</jtitle><date>2020-10-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Recent evaluation protocols for Cross-document (CD) coreference resolution have often been inconsistent or lenient, leading to incomparable results across works and overestimation of performance. To facilitate proper future research on this task, our primary contribution is proposing a pragmatic evaluation methodology which assumes access to only raw text -- rather than assuming gold mentions, disregards singleton prediction, and addresses typical targeted settings in CD coreference resolution. Aiming to set baseline results for future research that would follow our evaluation methodology, we build the first end-to-end model for this task. Our model adapts and extends recent neural models for within-document coreference resolution to address the CD coreference setting, which outperforms state-of-the-art results by a significant margin.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2445795436
source Publicly Available Content (ProQuest)
subjects Streamlining
title Streamlining Cross-Document Coreference Resolution: Evaluation and Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Streamlining%20Cross-Document%20Coreference%20Resolution:%20Evaluation%20and%20Modeling&rft.jtitle=arXiv.org&rft.au=Cattan,%20Arie&rft.date=2020-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2445795436%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24457954363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445795436&rft_id=info:pmid/&rfr_iscdi=true