Loading…

Fourier Analysis-based Iterative Combinatorial Auctions

Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set func...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-03
Main Authors: Weissteiner, Jakob, Wendler, Chris, Seuken, Sven, Lubin, Ben, Püschel, Markus
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Weissteiner, Jakob
Wendler, Chris
Seuken, Sven
Lubin, Ben
Püschel, Markus
description Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.
doi_str_mv 10.48550/arxiv.2009.10749
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2445795438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445795438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03</originalsourceid><addsrcrecordid>eNotzkFLwzAUwPEgCI65D-Ct4Ln15SVvTY6lOB0Mdtl9vKQpZNRWk3bot3egp__tz0-IJwmVNkTwwuk7XisEsJWEWts7sUKlZGk04oPY5HwBANzWSKRWot5NS4ohFc3Iw0-OuXScQ1fs55B4jtdQtNOHiyPPU4o8FM3i5ziN-VHc9zzksPnvWpx2r6f2vTwc3_ZtcyiZ0JSWjeEaSHvwtnfSWsPsvPRyG4hq2QF0xiH3xltjQ7AMpidE3SM550GtxfPf9jNNX0vI8_ly896o-YxaU21JK6N-AaGGSAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445795438</pqid></control><display><type>article</type><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><source>Publicly Available Content Database</source><creator>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</creator><creatorcontrib>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</creatorcontrib><description>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.10749</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Auctions ; Combinatorial analysis ; Design analysis ; Fourier analysis ; Fourier transforms ; Iterative methods ; Mixed integer ; Neural networks ; Queries</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445795438?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Weissteiner, Jakob</creatorcontrib><creatorcontrib>Wendler, Chris</creatorcontrib><creatorcontrib>Seuken, Sven</creatorcontrib><creatorcontrib>Lubin, Ben</creatorcontrib><creatorcontrib>Püschel, Markus</creatorcontrib><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><title>arXiv.org</title><description>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</description><subject>Auctions</subject><subject>Combinatorial analysis</subject><subject>Design analysis</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Iterative methods</subject><subject>Mixed integer</subject><subject>Neural networks</subject><subject>Queries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzkFLwzAUwPEgCI65D-Ct4Ln15SVvTY6lOB0Mdtl9vKQpZNRWk3bot3egp__tz0-IJwmVNkTwwuk7XisEsJWEWts7sUKlZGk04oPY5HwBANzWSKRWot5NS4ohFc3Iw0-OuXScQ1fs55B4jtdQtNOHiyPPU4o8FM3i5ziN-VHc9zzksPnvWpx2r6f2vTwc3_ZtcyiZ0JSWjeEaSHvwtnfSWsPsvPRyG4hq2QF0xiH3xltjQ7AMpidE3SM550GtxfPf9jNNX0vI8_ly896o-YxaU21JK6N-AaGGSAU</recordid><startdate>20230311</startdate><enddate>20230311</enddate><creator>Weissteiner, Jakob</creator><creator>Wendler, Chris</creator><creator>Seuken, Sven</creator><creator>Lubin, Ben</creator><creator>Püschel, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230311</creationdate><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><author>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Auctions</topic><topic>Combinatorial analysis</topic><topic>Design analysis</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Iterative methods</topic><topic>Mixed integer</topic><topic>Neural networks</topic><topic>Queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Weissteiner, Jakob</creatorcontrib><creatorcontrib>Wendler, Chris</creatorcontrib><creatorcontrib>Seuken, Sven</creatorcontrib><creatorcontrib>Lubin, Ben</creatorcontrib><creatorcontrib>Püschel, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weissteiner, Jakob</au><au>Wendler, Chris</au><au>Seuken, Sven</au><au>Lubin, Ben</au><au>Püschel, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Analysis-based Iterative Combinatorial Auctions</atitle><jtitle>arXiv.org</jtitle><date>2023-03-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.10749</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2445795438
source Publicly Available Content Database
subjects Auctions
Combinatorial analysis
Design analysis
Fourier analysis
Fourier transforms
Iterative methods
Mixed integer
Neural networks
Queries
title Fourier Analysis-based Iterative Combinatorial Auctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Analysis-based%20Iterative%20Combinatorial%20Auctions&rft.jtitle=arXiv.org&rft.au=Weissteiner,%20Jakob&rft.date=2023-03-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.10749&rft_dat=%3Cproquest%3E2445795438%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445795438&rft_id=info:pmid/&rfr_iscdi=true