Loading…
Fourier Analysis-based Iterative Combinatorial Auctions
Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set func...
Saved in:
Published in: | arXiv.org 2023-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Weissteiner, Jakob Wendler, Chris Seuken, Sven Lubin, Ben Püschel, Markus |
description | Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs. |
doi_str_mv | 10.48550/arxiv.2009.10749 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2445795438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445795438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03</originalsourceid><addsrcrecordid>eNotzkFLwzAUwPEgCI65D-Ct4Ln15SVvTY6lOB0Mdtl9vKQpZNRWk3bot3egp__tz0-IJwmVNkTwwuk7XisEsJWEWts7sUKlZGk04oPY5HwBANzWSKRWot5NS4ohFc3Iw0-OuXScQ1fs55B4jtdQtNOHiyPPU4o8FM3i5ziN-VHc9zzksPnvWpx2r6f2vTwc3_ZtcyiZ0JSWjeEaSHvwtnfSWsPsvPRyG4hq2QF0xiH3xltjQ7AMpidE3SM550GtxfPf9jNNX0vI8_ly896o-YxaU21JK6N-AaGGSAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445795438</pqid></control><display><type>article</type><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><source>Publicly Available Content Database</source><creator>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</creator><creatorcontrib>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</creatorcontrib><description>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.10749</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Auctions ; Combinatorial analysis ; Design analysis ; Fourier analysis ; Fourier transforms ; Iterative methods ; Mixed integer ; Neural networks ; Queries</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445795438?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Weissteiner, Jakob</creatorcontrib><creatorcontrib>Wendler, Chris</creatorcontrib><creatorcontrib>Seuken, Sven</creatorcontrib><creatorcontrib>Lubin, Ben</creatorcontrib><creatorcontrib>Püschel, Markus</creatorcontrib><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><title>arXiv.org</title><description>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</description><subject>Auctions</subject><subject>Combinatorial analysis</subject><subject>Design analysis</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Iterative methods</subject><subject>Mixed integer</subject><subject>Neural networks</subject><subject>Queries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzkFLwzAUwPEgCI65D-Ct4Ln15SVvTY6lOB0Mdtl9vKQpZNRWk3bot3egp__tz0-IJwmVNkTwwuk7XisEsJWEWts7sUKlZGk04oPY5HwBANzWSKRWot5NS4ohFc3Iw0-OuXScQ1fs55B4jtdQtNOHiyPPU4o8FM3i5ziN-VHc9zzksPnvWpx2r6f2vTwc3_ZtcyiZ0JSWjeEaSHvwtnfSWsPsvPRyG4hq2QF0xiH3xltjQ7AMpidE3SM550GtxfPf9jNNX0vI8_ly896o-YxaU21JK6N-AaGGSAU</recordid><startdate>20230311</startdate><enddate>20230311</enddate><creator>Weissteiner, Jakob</creator><creator>Wendler, Chris</creator><creator>Seuken, Sven</creator><creator>Lubin, Ben</creator><creator>Püschel, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230311</creationdate><title>Fourier Analysis-based Iterative Combinatorial Auctions</title><author>Weissteiner, Jakob ; Wendler, Chris ; Seuken, Sven ; Lubin, Ben ; Püschel, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Auctions</topic><topic>Combinatorial analysis</topic><topic>Design analysis</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Iterative methods</topic><topic>Mixed integer</topic><topic>Neural networks</topic><topic>Queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Weissteiner, Jakob</creatorcontrib><creatorcontrib>Wendler, Chris</creatorcontrib><creatorcontrib>Seuken, Sven</creatorcontrib><creatorcontrib>Lubin, Ben</creatorcontrib><creatorcontrib>Püschel, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weissteiner, Jakob</au><au>Wendler, Chris</au><au>Seuken, Sven</au><au>Lubin, Ben</au><au>Püschel, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourier Analysis-based Iterative Combinatorial Auctions</atitle><jtitle>arXiv.org</jtitle><date>2023-03-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recent advances in Fourier analysis have brought new tools to efficiently represent and learn set functions. In this paper, we bring the power of Fourier analysis to the design of combinatorial auctions (CAs). The key idea is to approximate bidders' value functions using Fourier-sparse set functions, which can be computed using a relatively small number of queries. Since this number is still too large for practical CAs, we propose a new hybrid design: we first use neural networks (NNs) to learn bidders' values and then apply Fourier analysis to the learned representations. On a technical level, we formulate a Fourier transform-based winner determination problem and derive its mixed integer program formulation. Based on this, we devise an iterative CA that asks Fourier-based queries. We experimentally show that our hybrid ICA achieves higher efficiency than prior auction designs, leads to a fairer distribution of social welfare, and significantly reduces runtime. With this paper, we are the first to leverage Fourier analysis in CA design and lay the foundation for future work in this area. Our code is available on GitHub: https://github.com/marketdesignresearch/FA-based-ICAs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.10749</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2445795438 |
source | Publicly Available Content Database |
subjects | Auctions Combinatorial analysis Design analysis Fourier analysis Fourier transforms Iterative methods Mixed integer Neural networks Queries |
title | Fourier Analysis-based Iterative Combinatorial Auctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourier%20Analysis-based%20Iterative%20Combinatorial%20Auctions&rft.jtitle=arXiv.org&rft.au=Weissteiner,%20Jakob&rft.date=2023-03-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.10749&rft_dat=%3Cproquest%3E2445795438%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-9a88a7054c0c9fb1998aabc1c16e5571d00d8b2af8c989ee9a08f5224f25bbc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445795438&rft_id=info:pmid/&rfr_iscdi=true |