Loading…
Robust and efficient post-processing for video object detection
Object recognition in video is an important task for plenty of applications, including autonomous driving perception, surveillance tasks, wearable devices or IoT networks. Object recognition using video data is more challenging than using still images due to blur, occlusions or rare object poses. Sp...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sabater, Alberto Montesano, Luis Murillo, Ana C |
description | Object recognition in video is an important task for plenty of applications, including autonomous driving perception, surveillance tasks, wearable devices or IoT networks. Object recognition using video data is more challenging than using still images due to blur, occlusions or rare object poses. Specific video detectors with high computational cost or standard image detectors together with a fast post-processing algorithm achieve the current state-of-the-art. This work introduces a novel post-processing pipeline that overcomes some of the limitations of previous post-processing methods by introducing a learning-based similarity evaluation between detections across frames. Our method improves the results of state-of-the-art specific video detectors, specially regarding fast moving objects, and presents low resource requirements. And applied to efficient still image detectors, such as YOLO, provides comparable results to much more computationally intensive detectors. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2445805768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445805768</sourcerecordid><originalsourceid>FETCH-proquest_journals_24458057683</originalsourceid><addsrcrecordid>eNqNi8sKwjAQAIMgWLT_sOC5EJOmzc2DKJ7Fe-ljIymSrd3E77eCH-BpDjOzEpnS-lDYUqmNyJlHKaWqamWMzsTxRl3iCG0YAJ3zvccQYSKOxTRTj8w-PMDRDG8_IAF1I_YRBowLPIWdWLv2yZj_uBX7y_l-un7vV0KOzUhpDotqVFkaK01dWf1f9QErazkp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445805768</pqid></control><display><type>article</type><title>Robust and efficient post-processing for video object detection</title><source>Publicly Available Content Database</source><creator>Sabater, Alberto ; Montesano, Luis ; Murillo, Ana C</creator><creatorcontrib>Sabater, Alberto ; Montesano, Luis ; Murillo, Ana C</creatorcontrib><description>Object recognition in video is an important task for plenty of applications, including autonomous driving perception, surveillance tasks, wearable devices or IoT networks. Object recognition using video data is more challenging than using still images due to blur, occlusions or rare object poses. Specific video detectors with high computational cost or standard image detectors together with a fast post-processing algorithm achieve the current state-of-the-art. This work introduces a novel post-processing pipeline that overcomes some of the limitations of previous post-processing methods by introducing a learning-based similarity evaluation between detections across frames. Our method improves the results of state-of-the-art specific video detectors, specially regarding fast moving objects, and presents low resource requirements. And applied to efficient still image detectors, such as YOLO, provides comparable results to much more computationally intensive detectors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Detectors ; Electronic devices ; Moving object recognition ; Post-processing ; Sensors ; Video data ; Wearable technology</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2445805768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sabater, Alberto</creatorcontrib><creatorcontrib>Montesano, Luis</creatorcontrib><creatorcontrib>Murillo, Ana C</creatorcontrib><title>Robust and efficient post-processing for video object detection</title><title>arXiv.org</title><description>Object recognition in video is an important task for plenty of applications, including autonomous driving perception, surveillance tasks, wearable devices or IoT networks. Object recognition using video data is more challenging than using still images due to blur, occlusions or rare object poses. Specific video detectors with high computational cost or standard image detectors together with a fast post-processing algorithm achieve the current state-of-the-art. This work introduces a novel post-processing pipeline that overcomes some of the limitations of previous post-processing methods by introducing a learning-based similarity evaluation between detections across frames. Our method improves the results of state-of-the-art specific video detectors, specially regarding fast moving objects, and presents low resource requirements. And applied to efficient still image detectors, such as YOLO, provides comparable results to much more computationally intensive detectors.</description><subject>Algorithms</subject><subject>Detectors</subject><subject>Electronic devices</subject><subject>Moving object recognition</subject><subject>Post-processing</subject><subject>Sensors</subject><subject>Video data</subject><subject>Wearable technology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAQAIMgWLT_sOC5EJOmzc2DKJ7Fe-ljIymSrd3E77eCH-BpDjOzEpnS-lDYUqmNyJlHKaWqamWMzsTxRl3iCG0YAJ3zvccQYSKOxTRTj8w-PMDRDG8_IAF1I_YRBowLPIWdWLv2yZj_uBX7y_l-un7vV0KOzUhpDotqVFkaK01dWf1f9QErazkp</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Sabater, Alberto</creator><creator>Montesano, Luis</creator><creator>Murillo, Ana C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200923</creationdate><title>Robust and efficient post-processing for video object detection</title><author>Sabater, Alberto ; Montesano, Luis ; Murillo, Ana C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24458057683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Detectors</topic><topic>Electronic devices</topic><topic>Moving object recognition</topic><topic>Post-processing</topic><topic>Sensors</topic><topic>Video data</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabater, Alberto</creatorcontrib><creatorcontrib>Montesano, Luis</creatorcontrib><creatorcontrib>Murillo, Ana C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabater, Alberto</au><au>Montesano, Luis</au><au>Murillo, Ana C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust and efficient post-processing for video object detection</atitle><jtitle>arXiv.org</jtitle><date>2020-09-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Object recognition in video is an important task for plenty of applications, including autonomous driving perception, surveillance tasks, wearable devices or IoT networks. Object recognition using video data is more challenging than using still images due to blur, occlusions or rare object poses. Specific video detectors with high computational cost or standard image detectors together with a fast post-processing algorithm achieve the current state-of-the-art. This work introduces a novel post-processing pipeline that overcomes some of the limitations of previous post-processing methods by introducing a learning-based similarity evaluation between detections across frames. Our method improves the results of state-of-the-art specific video detectors, specially regarding fast moving objects, and presents low resource requirements. And applied to efficient still image detectors, such as YOLO, provides comparable results to much more computationally intensive detectors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2445805768 |
source | Publicly Available Content Database |
subjects | Algorithms Detectors Electronic devices Moving object recognition Post-processing Sensors Video data Wearable technology |
title | Robust and efficient post-processing for video object detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20and%20efficient%20post-processing%20for%20video%20object%20detection&rft.jtitle=arXiv.org&rft.au=Sabater,%20Alberto&rft.date=2020-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2445805768%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24458057683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445805768&rft_id=info:pmid/&rfr_iscdi=true |