Loading…

Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia

The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spati...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2020-09, Vol.30 (39), p.n/a
Main Authors: Wan, Qing, Zhang, Rongyuan, Zhuang, Zeyan, Li, Yuxuan, Huang, Yuhua, Wang, Zhiming, Zhang, Weijie, Hou, Jianquan, Tang, Ben Zhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3
cites cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced functional materials
container_volume 30
creator Wan, Qing
Zhang, Rongyuan
Zhuang, Zeyan
Li, Yuxuan
Huang, Yuhua
Wang, Zhiming
Zhang, Weijie
Hou, Jianquan
Tang, Ben Zhong
description The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT. A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.
doi_str_mv 10.1002/adfm.202002057
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2445879508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445879508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrHjtEnGUlpaqRUVKhJbdInPqavELk4KZGNl4xl5ElwVwch0N3zff6ff8y4Z7TFKg2sQsuoFNHA77UdHXocN2MDnNIiPf3f2dOqd1fWGUhZFPOx4HwtTYr4rwZKxLpRGtEoXpDHkxpi6IcPZ-Ov9c5g36gXJxCKSBxAqh5Is16YxBWq00BhbE9DCRUBWIpmqYu2sJVppbAU6xwMtWg2Vyslq7aRtS3ZaoCXTdmveFJx7JxLKGi9-Ztd7nIxXo6k_v7-bjYZzP-fuZx-FFJwFMTKgNImklImUVHKRhUmf5ownAFkYMw6DcMCFyOIwDIAFUcIyilTwrnd1yN1a87zDukk3Zme1O5kGYdiPIxcTO6p3oHJr6tqiTLdWVWDblNF0X3e6rzv9rdsJyUF4VSW2_9Dp8Hay-HO_ASOth8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445879508</pqid></control><display><type>article</type><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><source>Wiley</source><creator>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</creator><creatorcontrib>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</creatorcontrib><description>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT. A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202002057</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation‐induced emission ; Charge transfer ; Fluorescence ; free radical reactive oxygen species ; Free radicals ; Hypoxia ; hypoxia tumor treatment ; Infrared imaging ; Internal conversion ; Materials science ; molecular engineering ; Photodynamic therapy ; Tumors</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (39), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</citedby><cites>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</cites><orcidid>0000-0002-3047-3285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Zhang, Rongyuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Huang, Yuhua</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Hou, Jianquan</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><title>Advanced functional materials</title><description>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT. A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</description><subject>Agglomeration</subject><subject>aggregation‐induced emission</subject><subject>Charge transfer</subject><subject>Fluorescence</subject><subject>free radical reactive oxygen species</subject><subject>Free radicals</subject><subject>Hypoxia</subject><subject>hypoxia tumor treatment</subject><subject>Infrared imaging</subject><subject>Internal conversion</subject><subject>Materials science</subject><subject>molecular engineering</subject><subject>Photodynamic therapy</subject><subject>Tumors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrHjtEnGUlpaqRUVKhJbdInPqavELk4KZGNl4xl5ElwVwch0N3zff6ff8y4Z7TFKg2sQsuoFNHA77UdHXocN2MDnNIiPf3f2dOqd1fWGUhZFPOx4HwtTYr4rwZKxLpRGtEoXpDHkxpi6IcPZ-Ov9c5g36gXJxCKSBxAqh5Is16YxBWq00BhbE9DCRUBWIpmqYu2sJVppbAU6xwMtWg2Vyslq7aRtS3ZaoCXTdmveFJx7JxLKGi9-Ztd7nIxXo6k_v7-bjYZzP-fuZx-FFJwFMTKgNImklImUVHKRhUmf5ownAFkYMw6DcMCFyOIwDIAFUcIyilTwrnd1yN1a87zDukk3Zme1O5kGYdiPIxcTO6p3oHJr6tqiTLdWVWDblNF0X3e6rzv9rdsJyUF4VSW2_9Dp8Hay-HO_ASOth8g</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wan, Qing</creator><creator>Zhang, Rongyuan</creator><creator>Zhuang, Zeyan</creator><creator>Li, Yuxuan</creator><creator>Huang, Yuhua</creator><creator>Wang, Zhiming</creator><creator>Zhang, Weijie</creator><creator>Hou, Jianquan</creator><creator>Tang, Ben Zhong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid></search><sort><creationdate>20200901</creationdate><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><author>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation‐induced emission</topic><topic>Charge transfer</topic><topic>Fluorescence</topic><topic>free radical reactive oxygen species</topic><topic>Free radicals</topic><topic>Hypoxia</topic><topic>hypoxia tumor treatment</topic><topic>Infrared imaging</topic><topic>Internal conversion</topic><topic>Materials science</topic><topic>molecular engineering</topic><topic>Photodynamic therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Zhang, Rongyuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Huang, Yuhua</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Hou, Jianquan</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qing</au><au>Zhang, Rongyuan</au><au>Zhuang, Zeyan</au><au>Li, Yuxuan</au><au>Huang, Yuhua</au><au>Wang, Zhiming</au><au>Zhang, Weijie</au><au>Hou, Jianquan</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT. A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202002057</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-09, Vol.30 (39), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2445879508
source Wiley
subjects Agglomeration
aggregation‐induced emission
Charge transfer
Fluorescence
free radical reactive oxygen species
Free radicals
Hypoxia
hypoxia tumor treatment
Infrared imaging
Internal conversion
Materials science
molecular engineering
Photodynamic therapy
Tumors
title Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20to%20Boost%20AIE%E2%80%90Active%20Free%20Radical%20Photogenerators%20and%20Enable%20High%E2%80%90Performance%20Photodynamic%20Therapy%20under%20Hypoxia&rft.jtitle=Advanced%20functional%20materials&rft.au=Wan,%20Qing&rft.date=2020-09-01&rft.volume=30&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202002057&rft_dat=%3Cproquest_cross%3E2445879508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445879508&rft_id=info:pmid/&rfr_iscdi=true