Loading…
Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia
The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spati...
Saved in:
Published in: | Advanced functional materials 2020-09, Vol.30 (39), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3 |
container_end_page | n/a |
container_issue | 39 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Wan, Qing Zhang, Rongyuan Zhuang, Zeyan Li, Yuxuan Huang, Yuhua Wang, Zhiming Zhang, Weijie Hou, Jianquan Tang, Ben Zhong |
description | The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT.
A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia. |
doi_str_mv | 10.1002/adfm.202002057 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2445879508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2445879508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEEqWwMltiTrHjtEnGUlpaqRUVKhJbdInPqavELk4KZGNl4xl5ElwVwch0N3zff6ff8y4Z7TFKg2sQsuoFNHA77UdHXocN2MDnNIiPf3f2dOqd1fWGUhZFPOx4HwtTYr4rwZKxLpRGtEoXpDHkxpi6IcPZ-Ov9c5g36gXJxCKSBxAqh5Is16YxBWq00BhbE9DCRUBWIpmqYu2sJVppbAU6xwMtWg2Vyslq7aRtS3ZaoCXTdmveFJx7JxLKGi9-Ztd7nIxXo6k_v7-bjYZzP-fuZx-FFJwFMTKgNImklImUVHKRhUmf5ownAFkYMw6DcMCFyOIwDIAFUcIyilTwrnd1yN1a87zDukk3Zme1O5kGYdiPIxcTO6p3oHJr6tqiTLdWVWDblNF0X3e6rzv9rdsJyUF4VSW2_9Dp8Hay-HO_ASOth8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445879508</pqid></control><display><type>article</type><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><source>Wiley</source><creator>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</creator><creatorcontrib>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</creatorcontrib><description>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT.
A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202002057</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Agglomeration ; aggregation‐induced emission ; Charge transfer ; Fluorescence ; free radical reactive oxygen species ; Free radicals ; Hypoxia ; hypoxia tumor treatment ; Infrared imaging ; Internal conversion ; Materials science ; molecular engineering ; Photodynamic therapy ; Tumors</subject><ispartof>Advanced functional materials, 2020-09, Vol.30 (39), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</citedby><cites>FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</cites><orcidid>0000-0002-3047-3285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Zhang, Rongyuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Huang, Yuhua</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Hou, Jianquan</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><title>Advanced functional materials</title><description>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT.
A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</description><subject>Agglomeration</subject><subject>aggregation‐induced emission</subject><subject>Charge transfer</subject><subject>Fluorescence</subject><subject>free radical reactive oxygen species</subject><subject>Free radicals</subject><subject>Hypoxia</subject><subject>hypoxia tumor treatment</subject><subject>Infrared imaging</subject><subject>Internal conversion</subject><subject>Materials science</subject><subject>molecular engineering</subject><subject>Photodynamic therapy</subject><subject>Tumors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhiMEEqWwMltiTrHjtEnGUlpaqRUVKhJbdInPqavELk4KZGNl4xl5ElwVwch0N3zff6ff8y4Z7TFKg2sQsuoFNHA77UdHXocN2MDnNIiPf3f2dOqd1fWGUhZFPOx4HwtTYr4rwZKxLpRGtEoXpDHkxpi6IcPZ-Ov9c5g36gXJxCKSBxAqh5Is16YxBWq00BhbE9DCRUBWIpmqYu2sJVppbAU6xwMtWg2Vyslq7aRtS3ZaoCXTdmveFJx7JxLKGi9-Ztd7nIxXo6k_v7-bjYZzP-fuZx-FFJwFMTKgNImklImUVHKRhUmf5ownAFkYMw6DcMCFyOIwDIAFUcIyilTwrnd1yN1a87zDukk3Zme1O5kGYdiPIxcTO6p3oHJr6tqiTLdWVWDblNF0X3e6rzv9rdsJyUF4VSW2_9Dp8Hay-HO_ASOth8g</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wan, Qing</creator><creator>Zhang, Rongyuan</creator><creator>Zhuang, Zeyan</creator><creator>Li, Yuxuan</creator><creator>Huang, Yuhua</creator><creator>Wang, Zhiming</creator><creator>Zhang, Weijie</creator><creator>Hou, Jianquan</creator><creator>Tang, Ben Zhong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid></search><sort><creationdate>20200901</creationdate><title>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</title><author>Wan, Qing ; Zhang, Rongyuan ; Zhuang, Zeyan ; Li, Yuxuan ; Huang, Yuhua ; Wang, Zhiming ; Zhang, Weijie ; Hou, Jianquan ; Tang, Ben Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>aggregation‐induced emission</topic><topic>Charge transfer</topic><topic>Fluorescence</topic><topic>free radical reactive oxygen species</topic><topic>Free radicals</topic><topic>Hypoxia</topic><topic>hypoxia tumor treatment</topic><topic>Infrared imaging</topic><topic>Internal conversion</topic><topic>Materials science</topic><topic>molecular engineering</topic><topic>Photodynamic therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Zhang, Rongyuan</creatorcontrib><creatorcontrib>Zhuang, Zeyan</creatorcontrib><creatorcontrib>Li, Yuxuan</creatorcontrib><creatorcontrib>Huang, Yuhua</creatorcontrib><creatorcontrib>Wang, Zhiming</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Hou, Jianquan</creatorcontrib><creatorcontrib>Tang, Ben Zhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qing</au><au>Zhang, Rongyuan</au><au>Zhuang, Zeyan</au><au>Li, Yuxuan</au><au>Huang, Yuhua</au><au>Wang, Zhiming</au><au>Zhang, Weijie</au><au>Hou, Jianquan</au><au>Tang, Ben Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia</atitle><jtitle>Advanced functional materials</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>30</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The severe hypoxia in solid tumors and the vicious aggregation‐caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) have limited the application of fluorescence imaging‐guided photodynamic therapy (PDT), although this therapy has obvious advantages in terms of its precise spatial–temporal control and noninvasive character. PSs featuring type I reactive oxygen species (ROS) based on free radicals and novel aggregation‐induced emission (AIE) characteristics (AIE‐PSs) could offer valuable opportunities to resolve the above problems, but molecular engineering methods are rare in previous reports. Herein, a strategy is proposed for generating stronger intramolecular charge transfer in electron‐rich anion‐π+ AIE‐active luminogens (AIEgens) to help suppress nonradiative internal conversion and to promote radiative and intersystem crossing to boost free radical generation. Systematic and detailed experimental and theoretical calculations prove the proposal herein: the electron‐donating abilities are enhanced in collaborative donors, and the AIE‐PSs exhibit higher performance in near‐infrared fluorescence imaging‐guided cancer PDT in vitro/vivo. This work serves as an important reference for the design of AIE‐active free radical generators to overcome the ACQ and tumor hypoxia challenges in PDT.
A feasible molecular engineering method is proposed for achieving the transformation of AIE‐active type I free radical ROS generators from type II 1O2 species to overcome ACQ effect and enable high‐performance photodynamic theory under hypoxia.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202002057</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3047-3285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-09, Vol.30 (39), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2445879508 |
source | Wiley |
subjects | Agglomeration aggregation‐induced emission Charge transfer Fluorescence free radical reactive oxygen species Free radicals Hypoxia hypoxia tumor treatment Infrared imaging Internal conversion Materials science molecular engineering Photodynamic therapy Tumors |
title | Molecular Engineering to Boost AIE‐Active Free Radical Photogenerators and Enable High‐Performance Photodynamic Therapy under Hypoxia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20to%20Boost%20AIE%E2%80%90Active%20Free%20Radical%20Photogenerators%20and%20Enable%20High%E2%80%90Performance%20Photodynamic%20Therapy%20under%20Hypoxia&rft.jtitle=Advanced%20functional%20materials&rft.au=Wan,%20Qing&rft.date=2020-09-01&rft.volume=30&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202002057&rft_dat=%3Cproquest_cross%3E2445879508%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3177-edfd3128e1a0097fff9ff0f3db4950c139aab4813a6463ddb8442a12791b0e0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445879508&rft_id=info:pmid/&rfr_iscdi=true |