Loading…

Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction

[Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2020-11, Vol.277, p.119247, Article 119247
Main Authors: Zhang, Yong-Chao, Ullah, Sana, Zhang, Rongrong, Pan, Lun, Zhang, Xiangwen, Zou, Ji-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363
cites cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363
container_end_page
container_issue
container_start_page 119247
container_title Applied catalysis. B, Environmental
container_volume 277
creator Zhang, Yong-Chao
Ullah, Sana
Zhang, Rongrong
Pan, Lun
Zhang, Xiangwen
Zou, Ji-Jun
description [Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step. Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.
doi_str_mv 10.1016/j.apcatb.2020.119247
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446019831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320306627</els_id><sourcerecordid>2446019831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThE4tyRNG3SXpDQxD9piAv3yE2dKVNJRtIhxqcnWzlzsmW_9yz_CLnmbMEZl7ebBWwNjN2iZGUe8bas1AmZ8UaJQjSNOCUz1payEEKJc3KR0oYxVoqymZHuFbzb7gYYnV9THNCMMXhnaI9DMDC4n7wJngZLX714q2i3px_g1-AxYRbZbEjUhkjD936Nnkbsd-ZoiQjH5pKcWRgSXv3VOXl_fHhfPhert6eX5f2qMEJUY9G0HXRWdhYahJpBV4NtVQXYiVIpVQsjJQdlOWstR6Ws6HslGZM12lpIMSc3U-w2hs8dplFvwi76fFGXVSUZbxvBs6qaVCaGlCJavY3uA-Jec6YPMPVGTzD1AaaeYGbb3WTD_MCXw6iTcegN9i5mAroP7v-AX5dRgGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446019831</pqid></control><display><type>article</type><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><source>Elsevier</source><creator>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</creator><creatorcontrib>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</creatorcontrib><description>[Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step. Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119247</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reduction ; Computer applications ; Conductivity ; Constraining ; Defects ; Electrocatalysis ; Electrochemistry ; Electronic structure ; Free energy ; Gibbs free energy ; Manganese ; Manganese oxides ; Metal defects ; Mn3O4 ; Oxygen ; Oxygen reduction reaction ; Oxygen reduction reactions</subject><ispartof>Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119247, Article 119247</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</citedby><cites>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</cites><orcidid>0000-0002-9126-1251 ; 0000-0002-3083-4693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yong-Chao</creatorcontrib><creatorcontrib>Ullah, Sana</creatorcontrib><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step. Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</description><subject>Chemical reduction</subject><subject>Computer applications</subject><subject>Conductivity</subject><subject>Constraining</subject><subject>Defects</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Metal defects</subject><subject>Mn3O4</subject><subject>Oxygen</subject><subject>Oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDThE4tyRNG3SXpDQxD9piAv3yE2dKVNJRtIhxqcnWzlzsmW_9yz_CLnmbMEZl7ebBWwNjN2iZGUe8bas1AmZ8UaJQjSNOCUz1payEEKJc3KR0oYxVoqymZHuFbzb7gYYnV9THNCMMXhnaI9DMDC4n7wJngZLX714q2i3px_g1-AxYRbZbEjUhkjD936Nnkbsd-ZoiQjH5pKcWRgSXv3VOXl_fHhfPhert6eX5f2qMEJUY9G0HXRWdhYahJpBV4NtVQXYiVIpVQsjJQdlOWstR6Ws6HslGZM12lpIMSc3U-w2hs8dplFvwi76fFGXVSUZbxvBs6qaVCaGlCJavY3uA-Jec6YPMPVGTzD1AaaeYGbb3WTD_MCXw6iTcegN9i5mAroP7v-AX5dRgGo</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Zhang, Yong-Chao</creator><creator>Ullah, Sana</creator><creator>Zhang, Rongrong</creator><creator>Pan, Lun</creator><creator>Zhang, Xiangwen</creator><creator>Zou, Ji-Jun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid></search><sort><creationdate>20201115</creationdate><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><author>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reduction</topic><topic>Computer applications</topic><topic>Conductivity</topic><topic>Constraining</topic><topic>Defects</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Metal defects</topic><topic>Mn3O4</topic><topic>Oxygen</topic><topic>Oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong-Chao</creatorcontrib><creatorcontrib>Ullah, Sana</creatorcontrib><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong-Chao</au><au>Ullah, Sana</au><au>Zhang, Rongrong</au><au>Pan, Lun</au><au>Zhang, Xiangwen</au><au>Zou, Ji-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>277</volume><spage>119247</spage><pages>119247-</pages><artnum>119247</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step. Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119247</doi><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119247, Article 119247
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2446019831
source Elsevier
subjects Chemical reduction
Computer applications
Conductivity
Constraining
Defects
Electrocatalysis
Electrochemistry
Electronic structure
Free energy
Gibbs free energy
Manganese
Manganese oxides
Metal defects
Mn3O4
Oxygen
Oxygen reduction reaction
Oxygen reduction reactions
title Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20electronic%20delocalization%20of%20Mn3O4%20by%20manganese%20defects%20for%20oxygen%20reduction%20reaction&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Zhang,%20Yong-Chao&rft.date=2020-11-15&rft.volume=277&rft.spage=119247&rft.pages=119247-&rft.artnum=119247&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119247&rft_dat=%3Cproquest_cross%3E2446019831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446019831&rft_id=info:pmid/&rfr_iscdi=true