Loading…
Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction
[Display omitted] •Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects...
Saved in:
Published in: | Applied catalysis. B, Environmental Environmental, 2020-11, Vol.277, p.119247, Article 119247 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363 |
container_end_page | |
container_issue | |
container_start_page | 119247 |
container_title | Applied catalysis. B, Environmental |
container_volume | 277 |
creator | Zhang, Yong-Chao Ullah, Sana Zhang, Rongrong Pan, Lun Zhang, Xiangwen Zou, Ji-Jun |
description | [Display omitted]
•Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step.
Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity. |
doi_str_mv | 10.1016/j.apcatb.2020.119247 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446019831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320306627</els_id><sourcerecordid>2446019831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwDThE4tyRNG3SXpDQxD9piAv3yE2dKVNJRtIhxqcnWzlzsmW_9yz_CLnmbMEZl7ebBWwNjN2iZGUe8bas1AmZ8UaJQjSNOCUz1payEEKJc3KR0oYxVoqymZHuFbzb7gYYnV9THNCMMXhnaI9DMDC4n7wJngZLX714q2i3px_g1-AxYRbZbEjUhkjD936Nnkbsd-ZoiQjH5pKcWRgSXv3VOXl_fHhfPhert6eX5f2qMEJUY9G0HXRWdhYahJpBV4NtVQXYiVIpVQsjJQdlOWstR6Ws6HslGZM12lpIMSc3U-w2hs8dplFvwi76fFGXVSUZbxvBs6qaVCaGlCJavY3uA-Jec6YPMPVGTzD1AaaeYGbb3WTD_MCXw6iTcegN9i5mAroP7v-AX5dRgGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446019831</pqid></control><display><type>article</type><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><source>Elsevier</source><creator>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</creator><creatorcontrib>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</creatorcontrib><description>[Display omitted]
•Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step.
Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119247</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reduction ; Computer applications ; Conductivity ; Constraining ; Defects ; Electrocatalysis ; Electrochemistry ; Electronic structure ; Free energy ; Gibbs free energy ; Manganese ; Manganese oxides ; Metal defects ; Mn3O4 ; Oxygen ; Oxygen reduction reaction ; Oxygen reduction reactions</subject><ispartof>Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119247, Article 119247</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</citedby><cites>FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</cites><orcidid>0000-0002-9126-1251 ; 0000-0002-3083-4693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yong-Chao</creatorcontrib><creatorcontrib>Ullah, Sana</creatorcontrib><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step.
Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</description><subject>Chemical reduction</subject><subject>Computer applications</subject><subject>Conductivity</subject><subject>Constraining</subject><subject>Defects</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Manganese</subject><subject>Manganese oxides</subject><subject>Metal defects</subject><subject>Mn3O4</subject><subject>Oxygen</subject><subject>Oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwDThE4tyRNG3SXpDQxD9piAv3yE2dKVNJRtIhxqcnWzlzsmW_9yz_CLnmbMEZl7ebBWwNjN2iZGUe8bas1AmZ8UaJQjSNOCUz1payEEKJc3KR0oYxVoqymZHuFbzb7gYYnV9THNCMMXhnaI9DMDC4n7wJngZLX714q2i3px_g1-AxYRbZbEjUhkjD936Nnkbsd-ZoiQjH5pKcWRgSXv3VOXl_fHhfPhert6eX5f2qMEJUY9G0HXRWdhYahJpBV4NtVQXYiVIpVQsjJQdlOWstR6Ws6HslGZM12lpIMSc3U-w2hs8dplFvwi76fFGXVSUZbxvBs6qaVCaGlCJavY3uA-Jec6YPMPVGTzD1AaaeYGbb3WTD_MCXw6iTcegN9i5mAroP7v-AX5dRgGo</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Zhang, Yong-Chao</creator><creator>Ullah, Sana</creator><creator>Zhang, Rongrong</creator><creator>Pan, Lun</creator><creator>Zhang, Xiangwen</creator><creator>Zou, Ji-Jun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid></search><sort><creationdate>20201115</creationdate><title>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</title><author>Zhang, Yong-Chao ; Ullah, Sana ; Zhang, Rongrong ; Pan, Lun ; Zhang, Xiangwen ; Zou, Ji-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reduction</topic><topic>Computer applications</topic><topic>Conductivity</topic><topic>Constraining</topic><topic>Defects</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Manganese</topic><topic>Manganese oxides</topic><topic>Metal defects</topic><topic>Mn3O4</topic><topic>Oxygen</topic><topic>Oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong-Chao</creatorcontrib><creatorcontrib>Ullah, Sana</creatorcontrib><creatorcontrib>Zhang, Rongrong</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong-Chao</au><au>Ullah, Sana</au><au>Zhang, Rongrong</au><au>Pan, Lun</au><au>Zhang, Xiangwen</au><au>Zou, Ji-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>277</volume><spage>119247</spage><pages>119247-</pages><artnum>119247</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•Mn-defected Mn3O4 was synthesized by thermal oxidation of manganese glycerate.•Mn defects tune electronic delocalization to improve conductivity.•Mn defects result in more surface Mn3+ as major active site.•O2 activation and OH* desorption are facilitated by Mn defects.•Mn defects reduce the Gibbs free energy variation in the rate-limiting step.
Manganese-based oxides are promising in electrocatalytic oxygen reduction reaction, but the activity and conductivity need further improvement. Herein manganese defected Mn3O4 was fabricated by solvothermal synthesis of manganese glycerate and then thermal calcination. The experimental and computational results reveal that manganese defects in Mn3O4 modify the electronic structure to improve conductivity and electronic delocalization, which helps to expose more surface Mn3+ as major active site, thereby facilitating O2 activation and OH* desorption, and reducing the Gibbs free energy variation in the rate-limiting step of ORR. Accordingly, the onset potential, half-wave potential and limiting current density of manganese defected Mn3O4 are 0.87 V, 0.65 V and 5.0 mA cm-2, better than that of normal Mn3O4 (0.77 V, 0.62 V and 2.6 mA cm-2). This work provides an effective approach to tune the defects and electronic structures of Mn3O4 for better electrochemical activity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119247</doi><orcidid>https://orcid.org/0000-0002-9126-1251</orcidid><orcidid>https://orcid.org/0000-0002-3083-4693</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119247, Article 119247 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2446019831 |
source | Elsevier |
subjects | Chemical reduction Computer applications Conductivity Constraining Defects Electrocatalysis Electrochemistry Electronic structure Free energy Gibbs free energy Manganese Manganese oxides Metal defects Mn3O4 Oxygen Oxygen reduction reaction Oxygen reduction reactions |
title | Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20electronic%20delocalization%20of%20Mn3O4%20by%20manganese%20defects%20for%20oxygen%20reduction%20reaction&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Zhang,%20Yong-Chao&rft.date=2020-11-15&rft.volume=277&rft.spage=119247&rft.pages=119247-&rft.artnum=119247&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119247&rft_dat=%3Cproquest_cross%3E2446019831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-89babf6bfa8ea50ab5af974aeb3277753c661a7f109f1e77f3dd760065ef5363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446019831&rft_id=info:pmid/&rfr_iscdi=true |