Loading…

Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD

Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2020-10, Vol.67 (10), p.4250-4255
Main Authors: Jeong, Seok-Goo, Jeong, Hyun-Jun, Choi, Wan-Ho, Kim, KyoungRok, Park, Jin-Seong
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33
cites
container_end_page 4255
container_issue 10
container_start_page 4250
container_title IEEE transactions on electron devices
container_volume 67
creator Jeong, Seok-Goo
Jeong, Hyun-Jun
Choi, Wan-Ho
Kim, KyoungRok
Park, Jin-Seong
description Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage ( {V}_{\text {th}} ) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal {V}_{\text {th}} shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.
doi_str_mv 10.1109/TED.2020.3017145
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2446060226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9179008</ieee_id><sourcerecordid>2446060226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</originalsourceid><addsrcrecordid>eNotjctLw0AYxBdRMFbvgpcFz6nfPrKPY2n6gkIEUw8eDJvspqS0ScwmYP97A_E0DPObGYSeCcwJAf2WruI5BQpzBkQSHt2ggESRDLXg4hYFAESFmil2jx68P41WcE4D9L292q45uhrvLq0peo-bEr-vFvsY7-qN-aoTnK5Tjw--qo_4o0p-8cb0bgz9cDZ903kcu7bxVe8szq9jdfkZY1PbaeQR3ZXm7N3Tv87QYb1Kl9twn2x2y8U-LIiCPpSEcVuWnFFmCVXaUCVpHumCjs5Yp0tbCKZywUihpeU6z0shI9AsclYVjM3Q67Tbds3P4HyfnZqhq8fLjHIuQAClYqReJqpyzmVtV11Md800kRpAsT-5clta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446060226</pqid></control><display><type>article</type><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><source>IEEE Xplore (Online service)</source><creator>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</creator><creatorcontrib>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</creatorcontrib><description><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3017145</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic layer epitaxy ; Backscattering ; Chemical synthesis ; Fourier transforms ; Gallium ; Hydrogen ; Hydrogen bonding ; Indium gallium zinc oxide ; Infrared spectroscopy ; Insulators ; Logic gates ; Oxide semiconductor ; Photoelectrons ; Plasma enhanced chemical vapor deposition ; Plasma temperature ; plasma-enhanced atomic layer deposition (PEALD) ; Recoil ; Rutherford backscattering spectroscopy ; Semiconductor devices ; Silicon dioxide ; Spectroscopy ; Spectrum analysis ; subchannel formation by hydrogen diffusion ; Thin film transistors ; thin-film transistors (TFTs) ; Threshold voltage ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4250-4255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</citedby><orcidid>0000-0001-6419-4420 ; 0000-0002-9070-5666 ; 0000-0002-5963-1048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9179008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Jeong, Hyun-Jun</creatorcontrib><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, KyoungRok</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></description><subject>Atomic layer epitaxy</subject><subject>Backscattering</subject><subject>Chemical synthesis</subject><subject>Fourier transforms</subject><subject>Gallium</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Indium gallium zinc oxide</subject><subject>Infrared spectroscopy</subject><subject>Insulators</subject><subject>Logic gates</subject><subject>Oxide semiconductor</subject><subject>Photoelectrons</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Plasma temperature</subject><subject>plasma-enhanced atomic layer deposition (PEALD)</subject><subject>Recoil</subject><subject>Rutherford backscattering spectroscopy</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>subchannel formation by hydrogen diffusion</subject><subject>Thin film transistors</subject><subject>thin-film transistors (TFTs)</subject><subject>Threshold voltage</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjctLw0AYxBdRMFbvgpcFz6nfPrKPY2n6gkIEUw8eDJvspqS0ScwmYP97A_E0DPObGYSeCcwJAf2WruI5BQpzBkQSHt2ggESRDLXg4hYFAESFmil2jx68P41WcE4D9L292q45uhrvLq0peo-bEr-vFvsY7-qN-aoTnK5Tjw--qo_4o0p-8cb0bgz9cDZ903kcu7bxVe8szq9jdfkZY1PbaeQR3ZXm7N3Tv87QYb1Kl9twn2x2y8U-LIiCPpSEcVuWnFFmCVXaUCVpHumCjs5Yp0tbCKZywUihpeU6z0shI9AsclYVjM3Q67Tbds3P4HyfnZqhq8fLjHIuQAClYqReJqpyzmVtV11Md800kRpAsT-5clta</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jeong, Seok-Goo</creator><creator>Jeong, Hyun-Jun</creator><creator>Choi, Wan-Ho</creator><creator>Kim, KyoungRok</creator><creator>Park, Jin-Seong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6419-4420</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid></search><sort><creationdate>20201001</creationdate><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><author>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic layer epitaxy</topic><topic>Backscattering</topic><topic>Chemical synthesis</topic><topic>Fourier transforms</topic><topic>Gallium</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Indium gallium zinc oxide</topic><topic>Infrared spectroscopy</topic><topic>Insulators</topic><topic>Logic gates</topic><topic>Oxide semiconductor</topic><topic>Photoelectrons</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Plasma temperature</topic><topic>plasma-enhanced atomic layer deposition (PEALD)</topic><topic>Recoil</topic><topic>Rutherford backscattering spectroscopy</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>subchannel formation by hydrogen diffusion</topic><topic>Thin film transistors</topic><topic>thin-film transistors (TFTs)</topic><topic>Threshold voltage</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Jeong, Hyun-Jun</creatorcontrib><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, KyoungRok</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seok-Goo</au><au>Jeong, Hyun-Jun</au><au>Choi, Wan-Ho</au><au>Kim, KyoungRok</au><au>Park, Jin-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>4250</spage><epage>4255</epage><pages>4250-4255</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3017145</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6419-4420</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4250-4255
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2446060226
source IEEE Xplore (Online service)
subjects Atomic layer epitaxy
Backscattering
Chemical synthesis
Fourier transforms
Gallium
Hydrogen
Hydrogen bonding
Indium gallium zinc oxide
Infrared spectroscopy
Insulators
Logic gates
Oxide semiconductor
Photoelectrons
Plasma enhanced chemical vapor deposition
Plasma temperature
plasma-enhanced atomic layer deposition (PEALD)
Recoil
Rutherford backscattering spectroscopy
Semiconductor devices
Silicon dioxide
Spectroscopy
Spectrum analysis
subchannel formation by hydrogen diffusion
Thin film transistors
thin-film transistors (TFTs)
Threshold voltage
X ray photoelectron spectroscopy
Zinc oxide
title Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Impacts%20of%20PEALD%20InGaZnO%20TFTs%20Using%20SiOx%20Gate%20Insulators%20Deposited%20by%20PECVD%20and%20PEALD&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Jeong,%20Seok-Goo&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=4250&rft.epage=4255&rft.pages=4250-4255&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3017145&rft_dat=%3Cproquest_ieee_%3E2446060226%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446060226&rft_id=info:pmid/&rft_ieee_id=9179008&rfr_iscdi=true