Loading…
Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD
Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance...
Saved in:
Published in: | IEEE transactions on electron devices 2020-10, Vol.67 (10), p.4250-4255 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33 |
---|---|
cites | |
container_end_page | 4255 |
container_issue | 10 |
container_start_page | 4250 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Jeong, Seok-Goo Jeong, Hyun-Jun Choi, Wan-Ho Kim, KyoungRok Park, Jin-Seong |
description | Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage ( {V}_{\text {th}} ) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal {V}_{\text {th}} shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%. |
doi_str_mv | 10.1109/TED.2020.3017145 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2446060226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9179008</ieee_id><sourcerecordid>2446060226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</originalsourceid><addsrcrecordid>eNotjctLw0AYxBdRMFbvgpcFz6nfPrKPY2n6gkIEUw8eDJvspqS0ScwmYP97A_E0DPObGYSeCcwJAf2WruI5BQpzBkQSHt2ggESRDLXg4hYFAESFmil2jx68P41WcE4D9L292q45uhrvLq0peo-bEr-vFvsY7-qN-aoTnK5Tjw--qo_4o0p-8cb0bgz9cDZ903kcu7bxVe8szq9jdfkZY1PbaeQR3ZXm7N3Tv87QYb1Kl9twn2x2y8U-LIiCPpSEcVuWnFFmCVXaUCVpHumCjs5Yp0tbCKZywUihpeU6z0shI9AsclYVjM3Q67Tbds3P4HyfnZqhq8fLjHIuQAClYqReJqpyzmVtV11Md800kRpAsT-5clta</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446060226</pqid></control><display><type>article</type><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><source>IEEE Xplore (Online service)</source><creator>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</creator><creatorcontrib>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</creatorcontrib><description><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3017145</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic layer epitaxy ; Backscattering ; Chemical synthesis ; Fourier transforms ; Gallium ; Hydrogen ; Hydrogen bonding ; Indium gallium zinc oxide ; Infrared spectroscopy ; Insulators ; Logic gates ; Oxide semiconductor ; Photoelectrons ; Plasma enhanced chemical vapor deposition ; Plasma temperature ; plasma-enhanced atomic layer deposition (PEALD) ; Recoil ; Rutherford backscattering spectroscopy ; Semiconductor devices ; Silicon dioxide ; Spectroscopy ; Spectrum analysis ; subchannel formation by hydrogen diffusion ; Thin film transistors ; thin-film transistors (TFTs) ; Threshold voltage ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4250-4255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</citedby><orcidid>0000-0001-6419-4420 ; 0000-0002-9070-5666 ; 0000-0002-5963-1048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9179008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Jeong, Hyun-Jun</creatorcontrib><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, KyoungRok</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></description><subject>Atomic layer epitaxy</subject><subject>Backscattering</subject><subject>Chemical synthesis</subject><subject>Fourier transforms</subject><subject>Gallium</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Indium gallium zinc oxide</subject><subject>Infrared spectroscopy</subject><subject>Insulators</subject><subject>Logic gates</subject><subject>Oxide semiconductor</subject><subject>Photoelectrons</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Plasma temperature</subject><subject>plasma-enhanced atomic layer deposition (PEALD)</subject><subject>Recoil</subject><subject>Rutherford backscattering spectroscopy</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>subchannel formation by hydrogen diffusion</subject><subject>Thin film transistors</subject><subject>thin-film transistors (TFTs)</subject><subject>Threshold voltage</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjctLw0AYxBdRMFbvgpcFz6nfPrKPY2n6gkIEUw8eDJvspqS0ScwmYP97A_E0DPObGYSeCcwJAf2WruI5BQpzBkQSHt2ggESRDLXg4hYFAESFmil2jx68P41WcE4D9L292q45uhrvLq0peo-bEr-vFvsY7-qN-aoTnK5Tjw--qo_4o0p-8cb0bgz9cDZ903kcu7bxVe8szq9jdfkZY1PbaeQR3ZXm7N3Tv87QYb1Kl9twn2x2y8U-LIiCPpSEcVuWnFFmCVXaUCVpHumCjs5Yp0tbCKZywUihpeU6z0shI9AsclYVjM3Q67Tbds3P4HyfnZqhq8fLjHIuQAClYqReJqpyzmVtV11Md800kRpAsT-5clta</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jeong, Seok-Goo</creator><creator>Jeong, Hyun-Jun</creator><creator>Choi, Wan-Ho</creator><creator>Kim, KyoungRok</creator><creator>Park, Jin-Seong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6419-4420</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid></search><sort><creationdate>20201001</creationdate><title>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</title><author>Jeong, Seok-Goo ; Jeong, Hyun-Jun ; Choi, Wan-Ho ; Kim, KyoungRok ; Park, Jin-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic layer epitaxy</topic><topic>Backscattering</topic><topic>Chemical synthesis</topic><topic>Fourier transforms</topic><topic>Gallium</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Indium gallium zinc oxide</topic><topic>Infrared spectroscopy</topic><topic>Insulators</topic><topic>Logic gates</topic><topic>Oxide semiconductor</topic><topic>Photoelectrons</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Plasma temperature</topic><topic>plasma-enhanced atomic layer deposition (PEALD)</topic><topic>Recoil</topic><topic>Rutherford backscattering spectroscopy</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>subchannel formation by hydrogen diffusion</topic><topic>Thin film transistors</topic><topic>thin-film transistors (TFTs)</topic><topic>Threshold voltage</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Seok-Goo</creatorcontrib><creatorcontrib>Jeong, Hyun-Jun</creatorcontrib><creatorcontrib>Choi, Wan-Ho</creatorcontrib><creatorcontrib>Kim, KyoungRok</creatorcontrib><creatorcontrib>Park, Jin-Seong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Seok-Goo</au><au>Jeong, Hyun-Jun</au><au>Choi, Wan-Ho</au><au>Kim, KyoungRok</au><au>Park, Jin-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>4250</spage><epage>4255</epage><pages>4250-4255</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Amorphous indium gallium zinc oxide (IGZO) deposited by plasma-enhanced atomic layer deposition (PEALD) thin-film transistors (TFTs) was fabricated using SiO 2 gate insulators synthesized via plasma-enhanced chemical vapor deposition (PECVD, device A) or PEALD (device B). The electrical performance of B devices was higher than that of device A. The mobilities of A and B devices were 19.39 and 21.11 cm 2 /Vs, and the subthreshold slopes were 0.25 and 0.22 V /decade, respectively. In addition, the device reliability of A devices shows an abnormal threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula>) shift of -1.25 V under positive bias temperature stress (PBTS), caused by hydrogen diffusion from the gate insulator to the channel region near the source/drain electrode. However, B devices had a normal <inline-formula> <tex-math notation="LaTeX">{V}_{\text {th}} </tex-math></inline-formula> shift of +2.87 V. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) results showed that PECVD SiO 2 has a large amount of hydrogen bonding, such as Si-OH, compared to PEALD SiO 2 . Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) measurement results confirmed that the hydrogen content of PECVD SiO 2 was 2.24%, whereas that of PEALD SiO 2 was lower at 1.45%.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3017145</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6419-4420</orcidid><orcidid>https://orcid.org/0000-0002-9070-5666</orcidid><orcidid>https://orcid.org/0000-0002-5963-1048</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-10, Vol.67 (10), p.4250-4255 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2446060226 |
source | IEEE Xplore (Online service) |
subjects | Atomic layer epitaxy Backscattering Chemical synthesis Fourier transforms Gallium Hydrogen Hydrogen bonding Indium gallium zinc oxide Infrared spectroscopy Insulators Logic gates Oxide semiconductor Photoelectrons Plasma enhanced chemical vapor deposition Plasma temperature plasma-enhanced atomic layer deposition (PEALD) Recoil Rutherford backscattering spectroscopy Semiconductor devices Silicon dioxide Spectroscopy Spectrum analysis subchannel formation by hydrogen diffusion Thin film transistors thin-film transistors (TFTs) Threshold voltage X ray photoelectron spectroscopy Zinc oxide |
title | Hydrogen Impacts of PEALD InGaZnO TFTs Using SiOx Gate Insulators Deposited by PECVD and PEALD |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Impacts%20of%20PEALD%20InGaZnO%20TFTs%20Using%20SiOx%20Gate%20Insulators%20Deposited%20by%20PECVD%20and%20PEALD&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Jeong,%20Seok-Goo&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=4250&rft.epage=4255&rft.pages=4250-4255&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3017145&rft_dat=%3Cproquest_ieee_%3E2446060226%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-7134dff4323d1289a2872b59c2128ade9fdc638b631c97d49bbf6750935ed8c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446060226&rft_id=info:pmid/&rft_ieee_id=9179008&rfr_iscdi=true |