Loading…

Dynamic dielectric properties characterization of tapered dielectrophoresis microelectrodes for selective detection and rapid manipulation of cells

Purpose This paper aims to present the dielectrophoresis (DEP) force (FDEP), defined as microelectrofluidics mechanism capabilities in performing selective detection and rapid manipulation of blood components such as red blood cells (RBC) and platelets. The purpose of this investigation is to unders...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronics international 2020-09, Vol.37 (4), p.189-198
Main Authors: Buyong, Muhamad Ramdzan, Larki, Farhad, Caille, Celine Elie, Abd Aziz, Norazreen, Ismail, Ahamad Ghadafi, Hamzah, Azrul Azlan, Yeop Majlis, Burhanuddin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This paper aims to present the dielectrophoresis (DEP) force (FDEP), defined as microelectrofluidics mechanism capabilities in performing selective detection and rapid manipulation of blood components such as red blood cells (RBC) and platelets. The purpose of this investigation is to understand FDEP correlation to the variation of dynamic dielectric properties of cells under an applied voltage bias. Design/methodology/approach In this paper, tapered design DEP microelectrodes are used and explained. To perform the characterization and optimization by analysing the DEP polarization factor, the change in dynamic dielectric properties of blood components are observed according to the crossover frequency (fxo) and adjustment frequency (fadj) variation for selective detection and rapid manipulation. Findings Experimental observation of dynamic dielectric properties change shows clear correlation to DEP polarization factor when performing selective detection and rapid manipulation. These tapered DEP microelectrodes demonstrate an in situ DEP patterning efficiency more than 95%. Research limitations/implications The capabilities of tapered DEP microelectrode devices are introduced in this paper. However, they are not yet mature in medical research studies for various purposes such as identifying cells and bio-molecules for detection, isolation and manipulation application. This is because of biological property variations that require further DEP characterization and optimization. Practical implications The introduction of microelectrofluidics using DEP microelectrodes operate by selective detecting and rapid manipulating via lateral and vertical forces. This can be implemented on precision health-care development for lab-on-a-chip application in microfluidic diagnostic and prognostic devices. Originality/value This study introduces a new concept to understand the dynamic dielectric properties change. This is useful for rapid, label free and precise methods to conduct selective detection and rapid manipulation of mixtures of RBC and platelets. Further, potential applications that can be considered are for protein, toxin, cancer cell and bacteria detections and manipulation. Implementation of tapered DEP microelectrodes can be used based on the understanding of dynamic dielectric properties of polarization factor analysis.
ISSN:1356-5362
1758-812X
DOI:10.1108/MI-03-2020-0015