Loading…

Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach

•A novel multi-physics computational framework for L-DED process is proposed.•Particle-scale thermofluidic model is integrated with Cellular Automata approach.•Realistic Inconel-625 particle stream predicted by DEM modelling is utilized.•Results reveal highly oscillatory and chaotic melt flow due to...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2020-09, Vol.158, p.119989, Article 119989
Main Authors: Aggarwal, Akash, Chouhan, Arvind, Patel, Sushil, Yadav, D.K., Kumar, Arvind, Vinod, A.R., Prashanth, K.G., Gurao, N.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943
cites cdi_FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943
container_end_page
container_issue
container_start_page 119989
container_title International journal of heat and mass transfer
container_volume 158
creator Aggarwal, Akash
Chouhan, Arvind
Patel, Sushil
Yadav, D.K.
Kumar, Arvind
Vinod, A.R.
Prashanth, K.G.
Gurao, N.P.
description •A novel multi-physics computational framework for L-DED process is proposed.•Particle-scale thermofluidic model is integrated with Cellular Automata approach.•Realistic Inconel-625 particle stream predicted by DEM modelling is utilized.•Results reveal highly oscillatory and chaotic melt flow due to impinging particles.•Predicted melt pool, temperature, and grain structure compare well with experiments. High speed imaging of molten pool free-surface hydrodynamics in laser-assisted directed energy deposition process clearly revealed a highly oscillatory and dynamic melt flow due to impinging powder particles. Surprisingly, most of the reported computational work exclude the injection of powder particles and rather adopt a homogeneous mass and energy addition approach, and therefore provides less accurate predictions. In this work, we develop a coupled multi-physics particle-scale approach utilizing the discrete element method for particle trajectory prediction, the computational fluid dynamics for free-surface thermo-fluidic modelling and the cellular automata method for grain growth evolution. In the model, the governing physical phenomena, such as laser-powder interaction, in-flight particle heating, phase change (melting, vaporization and solidification), free-surface evolution, molten pool hydrodynamics and impinging particles-melt interaction have been considered. Experiments for the deposition of Inconel-625 on an Inconel-625 substrate are carried out, and the model predictions are validated with the experimental measurements. For the first time, the predicted thermo-fluidic simulation results reveal highly oscillatory, chaotic and random melt flow attributed to the impinging powder particles. During the deposition, it is found that the role of the Marangoni convection is less significant as compared to the momentum imparted by the impinging powder particles in the melt pool. Using the simulated thermal undercooling data, cellular automata-based grain growth simulation predicts elongated columnar dendrites in the melt pool that grows epitaxially from the melt pool interface and stretches towards the centre. Using the Kurz-Fisher model, the effect of local thermodynamic solidification conditions on the size of dendritic microstructure is also described. The predicted melt pool geometry, temperature field and grain structure compare well with the experimental measurements.
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.119989
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446722845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019367997</els_id><sourcerecordid>2446722845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943</originalsourceid><addsrcrecordid>eNqNUd2K1DAYLaLguPoOH3jjhZ1N0kzaeuUwM-squywseh3S5KtNaZuaZFbmznfYB_GdfBIzVLzxRgh8hHM4P5wse0PJmhIqLvu17TtUcVQhRK-m0KJfM8ISTOu6qp9kK1qVdc5oVT_NVoTQMq8LSp5nL0Loz1_CxSr7ee8GBNeCHWc7fU0PZvfdoIdZ-Wj1gAHcBCMOMQFugO5kvDOnSY1Wh7cQO_SjGqDBTj1Yd_SgJgMJ8y7FOup49Ah2gkEF9HnKakNEA_vDHmbvNIbwDrZ_vfKgVYqzP9zCrx-PsLvaL3cLak50pbuX2bNWDQFf_bkX2Zerw-fddX5z9-HjbnuT66IkMae0aRUTwrBKNCVXBdkYLlhVVAXRJeV804gSG0IZLasNb9E0gjdcUS0KXdS8uMheL7rJ9tsRQ5R9KjclS8k4FyVjFd8k1vuFda4bPLZy9nZU_iQpkeeZZC__nUmeZ5LLTEni0yKBqc2DTWjQFieNxnrUURpn_1_sNz9pq00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446722845</pqid></control><display><type>article</type><title>Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach</title><source>ScienceDirect Freedom Collection</source><creator>Aggarwal, Akash ; Chouhan, Arvind ; Patel, Sushil ; Yadav, D.K. ; Kumar, Arvind ; Vinod, A.R. ; Prashanth, K.G. ; Gurao, N.P.</creator><creatorcontrib>Aggarwal, Akash ; Chouhan, Arvind ; Patel, Sushil ; Yadav, D.K. ; Kumar, Arvind ; Vinod, A.R. ; Prashanth, K.G. ; Gurao, N.P.</creatorcontrib><description>•A novel multi-physics computational framework for L-DED process is proposed.•Particle-scale thermofluidic model is integrated with Cellular Automata approach.•Realistic Inconel-625 particle stream predicted by DEM modelling is utilized.•Results reveal highly oscillatory and chaotic melt flow due to impinging particles.•Predicted melt pool, temperature, and grain structure compare well with experiments. High speed imaging of molten pool free-surface hydrodynamics in laser-assisted directed energy deposition process clearly revealed a highly oscillatory and dynamic melt flow due to impinging powder particles. Surprisingly, most of the reported computational work exclude the injection of powder particles and rather adopt a homogeneous mass and energy addition approach, and therefore provides less accurate predictions. In this work, we develop a coupled multi-physics particle-scale approach utilizing the discrete element method for particle trajectory prediction, the computational fluid dynamics for free-surface thermo-fluidic modelling and the cellular automata method for grain growth evolution. In the model, the governing physical phenomena, such as laser-powder interaction, in-flight particle heating, phase change (melting, vaporization and solidification), free-surface evolution, molten pool hydrodynamics and impinging particles-melt interaction have been considered. Experiments for the deposition of Inconel-625 on an Inconel-625 substrate are carried out, and the model predictions are validated with the experimental measurements. For the first time, the predicted thermo-fluidic simulation results reveal highly oscillatory, chaotic and random melt flow attributed to the impinging powder particles. During the deposition, it is found that the role of the Marangoni convection is less significant as compared to the momentum imparted by the impinging powder particles in the melt pool. Using the simulated thermal undercooling data, cellular automata-based grain growth simulation predicts elongated columnar dendrites in the melt pool that grows epitaxially from the melt pool interface and stretches towards the centre. Using the Kurz-Fisher model, the effect of local thermodynamic solidification conditions on the size of dendritic microstructure is also described. The predicted melt pool geometry, temperature field and grain structure compare well with the experimental measurements.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.119989</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cellular automata ; Computational fluid dynamics ; Computer simulation ; Deposition ; Discrete element method ; Epitaxial growth ; Evolution ; Fluid flow ; Fluid mechanics ; Free surfaces ; Grain growth ; Grain structure ; Hydrodynamics ; Laser beam heating ; Laser-assisted directed energy deposition ; Lasers ; Marangoni convection ; Mathematical models ; Microstructure ; Molten pool hydrodynamics ; Nickel base alloys ; Particle trajectories ; Particles impingement ; Solidification ; Substrates ; Superalloys ; Supercooling ; Temperature distribution ; Thermal simulation ; Thermodynamic properties</subject><ispartof>International journal of heat and mass transfer, 2020-09, Vol.158, p.119989, Article 119989</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943</citedby><cites>FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Aggarwal, Akash</creatorcontrib><creatorcontrib>Chouhan, Arvind</creatorcontrib><creatorcontrib>Patel, Sushil</creatorcontrib><creatorcontrib>Yadav, D.K.</creatorcontrib><creatorcontrib>Kumar, Arvind</creatorcontrib><creatorcontrib>Vinod, A.R.</creatorcontrib><creatorcontrib>Prashanth, K.G.</creatorcontrib><creatorcontrib>Gurao, N.P.</creatorcontrib><title>Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach</title><title>International journal of heat and mass transfer</title><description>•A novel multi-physics computational framework for L-DED process is proposed.•Particle-scale thermofluidic model is integrated with Cellular Automata approach.•Realistic Inconel-625 particle stream predicted by DEM modelling is utilized.•Results reveal highly oscillatory and chaotic melt flow due to impinging particles.•Predicted melt pool, temperature, and grain structure compare well with experiments. High speed imaging of molten pool free-surface hydrodynamics in laser-assisted directed energy deposition process clearly revealed a highly oscillatory and dynamic melt flow due to impinging powder particles. Surprisingly, most of the reported computational work exclude the injection of powder particles and rather adopt a homogeneous mass and energy addition approach, and therefore provides less accurate predictions. In this work, we develop a coupled multi-physics particle-scale approach utilizing the discrete element method for particle trajectory prediction, the computational fluid dynamics for free-surface thermo-fluidic modelling and the cellular automata method for grain growth evolution. In the model, the governing physical phenomena, such as laser-powder interaction, in-flight particle heating, phase change (melting, vaporization and solidification), free-surface evolution, molten pool hydrodynamics and impinging particles-melt interaction have been considered. Experiments for the deposition of Inconel-625 on an Inconel-625 substrate are carried out, and the model predictions are validated with the experimental measurements. For the first time, the predicted thermo-fluidic simulation results reveal highly oscillatory, chaotic and random melt flow attributed to the impinging powder particles. During the deposition, it is found that the role of the Marangoni convection is less significant as compared to the momentum imparted by the impinging powder particles in the melt pool. Using the simulated thermal undercooling data, cellular automata-based grain growth simulation predicts elongated columnar dendrites in the melt pool that grows epitaxially from the melt pool interface and stretches towards the centre. Using the Kurz-Fisher model, the effect of local thermodynamic solidification conditions on the size of dendritic microstructure is also described. The predicted melt pool geometry, temperature field and grain structure compare well with the experimental measurements.</description><subject>Cellular automata</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>Discrete element method</subject><subject>Epitaxial growth</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Grain growth</subject><subject>Grain structure</subject><subject>Hydrodynamics</subject><subject>Laser beam heating</subject><subject>Laser-assisted directed energy deposition</subject><subject>Lasers</subject><subject>Marangoni convection</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Molten pool hydrodynamics</subject><subject>Nickel base alloys</subject><subject>Particle trajectories</subject><subject>Particles impingement</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Superalloys</subject><subject>Supercooling</subject><subject>Temperature distribution</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUd2K1DAYLaLguPoOH3jjhZ1N0kzaeuUwM-squywseh3S5KtNaZuaZFbmznfYB_GdfBIzVLzxRgh8hHM4P5wse0PJmhIqLvu17TtUcVQhRK-m0KJfM8ISTOu6qp9kK1qVdc5oVT_NVoTQMq8LSp5nL0Loz1_CxSr7ee8GBNeCHWc7fU0PZvfdoIdZ-Wj1gAHcBCMOMQFugO5kvDOnSY1Wh7cQO_SjGqDBTj1Yd_SgJgMJ8y7FOup49Ah2gkEF9HnKakNEA_vDHmbvNIbwDrZ_vfKgVYqzP9zCrx-PsLvaL3cLak50pbuX2bNWDQFf_bkX2Zerw-fddX5z9-HjbnuT66IkMae0aRUTwrBKNCVXBdkYLlhVVAXRJeV804gSG0IZLasNb9E0gjdcUS0KXdS8uMheL7rJ9tsRQ5R9KjclS8k4FyVjFd8k1vuFda4bPLZy9nZU_iQpkeeZZC__nUmeZ5LLTEni0yKBqc2DTWjQFieNxnrUURpn_1_sNz9pq00</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Aggarwal, Akash</creator><creator>Chouhan, Arvind</creator><creator>Patel, Sushil</creator><creator>Yadav, D.K.</creator><creator>Kumar, Arvind</creator><creator>Vinod, A.R.</creator><creator>Prashanth, K.G.</creator><creator>Gurao, N.P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202009</creationdate><title>Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach</title><author>Aggarwal, Akash ; Chouhan, Arvind ; Patel, Sushil ; Yadav, D.K. ; Kumar, Arvind ; Vinod, A.R. ; Prashanth, K.G. ; Gurao, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cellular automata</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>Discrete element method</topic><topic>Epitaxial growth</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Grain growth</topic><topic>Grain structure</topic><topic>Hydrodynamics</topic><topic>Laser beam heating</topic><topic>Laser-assisted directed energy deposition</topic><topic>Lasers</topic><topic>Marangoni convection</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Molten pool hydrodynamics</topic><topic>Nickel base alloys</topic><topic>Particle trajectories</topic><topic>Particles impingement</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Superalloys</topic><topic>Supercooling</topic><topic>Temperature distribution</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Akash</creatorcontrib><creatorcontrib>Chouhan, Arvind</creatorcontrib><creatorcontrib>Patel, Sushil</creatorcontrib><creatorcontrib>Yadav, D.K.</creatorcontrib><creatorcontrib>Kumar, Arvind</creatorcontrib><creatorcontrib>Vinod, A.R.</creatorcontrib><creatorcontrib>Prashanth, K.G.</creatorcontrib><creatorcontrib>Gurao, N.P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Akash</au><au>Chouhan, Arvind</au><au>Patel, Sushil</au><au>Yadav, D.K.</au><au>Kumar, Arvind</au><au>Vinod, A.R.</au><au>Prashanth, K.G.</au><au>Gurao, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-09</date><risdate>2020</risdate><volume>158</volume><spage>119989</spage><pages>119989-</pages><artnum>119989</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•A novel multi-physics computational framework for L-DED process is proposed.•Particle-scale thermofluidic model is integrated with Cellular Automata approach.•Realistic Inconel-625 particle stream predicted by DEM modelling is utilized.•Results reveal highly oscillatory and chaotic melt flow due to impinging particles.•Predicted melt pool, temperature, and grain structure compare well with experiments. High speed imaging of molten pool free-surface hydrodynamics in laser-assisted directed energy deposition process clearly revealed a highly oscillatory and dynamic melt flow due to impinging powder particles. Surprisingly, most of the reported computational work exclude the injection of powder particles and rather adopt a homogeneous mass and energy addition approach, and therefore provides less accurate predictions. In this work, we develop a coupled multi-physics particle-scale approach utilizing the discrete element method for particle trajectory prediction, the computational fluid dynamics for free-surface thermo-fluidic modelling and the cellular automata method for grain growth evolution. In the model, the governing physical phenomena, such as laser-powder interaction, in-flight particle heating, phase change (melting, vaporization and solidification), free-surface evolution, molten pool hydrodynamics and impinging particles-melt interaction have been considered. Experiments for the deposition of Inconel-625 on an Inconel-625 substrate are carried out, and the model predictions are validated with the experimental measurements. For the first time, the predicted thermo-fluidic simulation results reveal highly oscillatory, chaotic and random melt flow attributed to the impinging powder particles. During the deposition, it is found that the role of the Marangoni convection is less significant as compared to the momentum imparted by the impinging powder particles in the melt pool. Using the simulated thermal undercooling data, cellular automata-based grain growth simulation predicts elongated columnar dendrites in the melt pool that grows epitaxially from the melt pool interface and stretches towards the centre. Using the Kurz-Fisher model, the effect of local thermodynamic solidification conditions on the size of dendritic microstructure is also described. The predicted melt pool geometry, temperature field and grain structure compare well with the experimental measurements.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.119989</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-09, Vol.158, p.119989, Article 119989
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2446722845
source ScienceDirect Freedom Collection
subjects Cellular automata
Computational fluid dynamics
Computer simulation
Deposition
Discrete element method
Epitaxial growth
Evolution
Fluid flow
Fluid mechanics
Free surfaces
Grain growth
Grain structure
Hydrodynamics
Laser beam heating
Laser-assisted directed energy deposition
Lasers
Marangoni convection
Mathematical models
Microstructure
Molten pool hydrodynamics
Nickel base alloys
Particle trajectories
Particles impingement
Solidification
Substrates
Superalloys
Supercooling
Temperature distribution
Thermal simulation
Thermodynamic properties
title Role of impinging powder particles on melt pool hydrodynamics, thermal behaviour and microstructure in laser-assisted DED process: A particle-scale DEM – CFD – CA approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20impinging%20powder%20particles%20on%20melt%20pool%20hydrodynamics,%20thermal%20behaviour%20and%20microstructure%20in%20laser-assisted%20DED%20process:%20A%20particle-scale%20DEM%20%E2%80%93%20CFD%20%E2%80%93%20CA%20approach&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Aggarwal,%20Akash&rft.date=2020-09&rft.volume=158&rft.spage=119989&rft.pages=119989-&rft.artnum=119989&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.119989&rft_dat=%3Cproquest_cross%3E2446722845%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-11bfa266d286b74a305d46283830c71445b67eb01217854fedb64b4a1c63c3943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446722845&rft_id=info:pmid/&rfr_iscdi=true