Loading…

Optimization of an axial turbine for a small scale ORC waste heat recovery system

Low power Organic Rankine Cycle (ORC) turbines are typically characterised by flow efficiencies much smaller than those of large power steam or gas turbines. The paper concentrates on a possibility of improving the flow efficiency of an ORC axial turbine working on toluene using several optimization...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2020-08, Vol.205, p.118059, Article 118059
Main Authors: Witanowski, Ł., Klonowicz, P., Lampart, P., Suchocki, T., Jędrzejewski, Ł., Zaniewski, D., Klimaszewski, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83
cites cdi_FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83
container_end_page
container_issue
container_start_page 118059
container_title Energy (Oxford)
container_volume 205
creator Witanowski, Ł.
Klonowicz, P.
Lampart, P.
Suchocki, T.
Jędrzejewski, Ł.
Zaniewski, D.
Klimaszewski, P.
description Low power Organic Rankine Cycle (ORC) turbines are typically characterised by flow efficiencies much smaller than those of large power steam or gas turbines. The paper concentrates on a possibility of improving the flow efficiency of an ORC axial turbine working on toluene using several optimization algorithms such as a simplex method of Nelder-Mead, a hybrid of genetic algorithm with the Nelder-Mead method, as well as implicit filtering. Values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from 3D RANS computation of the flowpath geometry changing during the optimization process. Among the optimized geometric parameters are stator and rotor profile parametrization variables, rotor blade twist angle, circumferential lean and axial sweep angles, as well as parameters characterising the shape of endwall contours within the stator and rotor domain. The process of optimization leads to new 3D designs featuring increased efficiency compared to the original design, mainly due to a reduction in secondary and tip leakage flow losses as well as boundary layer, separation and leaving energy losses. The results especially highlight a large potential of the method of implicit filtering in optimizing multi-parameter objective functions. •A 45 kW turbine prepared for a small ORC CHP is shown.•Deterministic and hybrid methods of optimization are applied.•A wide range of variation of ORC turbine flowpath are investigated.•Performance maps for the best results are shown.•Turbine mechanical qualification is performed.
doi_str_mv 10.1016/j.energy.2020.118059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446724807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036054422031166X</els_id><sourcerecordid>2446724807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gYsB16nzymM2ghRfUCiKroebyY1OSJM6M63GX29KXLu6cDjnXM5HyCVnC854dt0ssEP_PiwEE6PEC5bqIzLjRS6TLC_SYzJjMmNJqpQ4JWchNIyxtNB6Rp7X2-g27gei6zva1xQ6Ct8OWhp3vnQd0rr3FGjYQNvSYKFFun5Z0i8IEekHQqQebb9HP9AwjNrmnJzU0Aa8-Ltz8nZ_97p8TFbrh6fl7SqxUqqYZCXXGuuSScAaSo6oNKZFkVWF0mkuLOgMNQdb2bKqQKaCA1dM1ohMjCY5J1dT79b3nzsM0TT9znfjSyOUynKhCpaPLjW5rO9D8FibrXcb8IPhzBzgmcZM8MwBnpngjbGbKYbjgr1Db4J12Fms3Dg3mqp3_xf8Avslemg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446724807</pqid></control><display><type>article</type><title>Optimization of an axial turbine for a small scale ORC waste heat recovery system</title><source>ScienceDirect Freedom Collection</source><creator>Witanowski, Ł. ; Klonowicz, P. ; Lampart, P. ; Suchocki, T. ; Jędrzejewski, Ł. ; Zaniewski, D. ; Klimaszewski, P.</creator><creatorcontrib>Witanowski, Ł. ; Klonowicz, P. ; Lampart, P. ; Suchocki, T. ; Jędrzejewski, Ł. ; Zaniewski, D. ; Klimaszewski, P.</creatorcontrib><description>Low power Organic Rankine Cycle (ORC) turbines are typically characterised by flow efficiencies much smaller than those of large power steam or gas turbines. The paper concentrates on a possibility of improving the flow efficiency of an ORC axial turbine working on toluene using several optimization algorithms such as a simplex method of Nelder-Mead, a hybrid of genetic algorithm with the Nelder-Mead method, as well as implicit filtering. Values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from 3D RANS computation of the flowpath geometry changing during the optimization process. Among the optimized geometric parameters are stator and rotor profile parametrization variables, rotor blade twist angle, circumferential lean and axial sweep angles, as well as parameters characterising the shape of endwall contours within the stator and rotor domain. The process of optimization leads to new 3D designs featuring increased efficiency compared to the original design, mainly due to a reduction in secondary and tip leakage flow losses as well as boundary layer, separation and leaving energy losses. The results especially highlight a large potential of the method of implicit filtering in optimizing multi-parameter objective functions. •A 45 kW turbine prepared for a small ORC CHP is shown.•Deterministic and hybrid methods of optimization are applied.•A wide range of variation of ORC turbine flowpath are investigated.•Performance maps for the best results are shown.•Turbine mechanical qualification is performed.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118059</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Axial turbine ; Boundary layers ; Computational fluid dynamics (CFD) ; Efficiency ; Filtration ; Gas turbines ; Genetic algorithms ; Heat recovery ; Heat recovery systems ; Objective function ; Optimization ; Organic rankine cycle (ORC) ; Parameterization ; Parameters ; Rankine cycle ; Rotor blades ; Rotor blades (turbomachinery) ; Simplex method ; Stators ; Steam electric power generation ; Sweep angle ; Toluene ; Waste heat recovery ; Waste recovery</subject><ispartof>Energy (Oxford), 2020-08, Vol.205, p.118059, Article 118059</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83</citedby><cites>FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Witanowski, Ł.</creatorcontrib><creatorcontrib>Klonowicz, P.</creatorcontrib><creatorcontrib>Lampart, P.</creatorcontrib><creatorcontrib>Suchocki, T.</creatorcontrib><creatorcontrib>Jędrzejewski, Ł.</creatorcontrib><creatorcontrib>Zaniewski, D.</creatorcontrib><creatorcontrib>Klimaszewski, P.</creatorcontrib><title>Optimization of an axial turbine for a small scale ORC waste heat recovery system</title><title>Energy (Oxford)</title><description>Low power Organic Rankine Cycle (ORC) turbines are typically characterised by flow efficiencies much smaller than those of large power steam or gas turbines. The paper concentrates on a possibility of improving the flow efficiency of an ORC axial turbine working on toluene using several optimization algorithms such as a simplex method of Nelder-Mead, a hybrid of genetic algorithm with the Nelder-Mead method, as well as implicit filtering. Values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from 3D RANS computation of the flowpath geometry changing during the optimization process. Among the optimized geometric parameters are stator and rotor profile parametrization variables, rotor blade twist angle, circumferential lean and axial sweep angles, as well as parameters characterising the shape of endwall contours within the stator and rotor domain. The process of optimization leads to new 3D designs featuring increased efficiency compared to the original design, mainly due to a reduction in secondary and tip leakage flow losses as well as boundary layer, separation and leaving energy losses. The results especially highlight a large potential of the method of implicit filtering in optimizing multi-parameter objective functions. •A 45 kW turbine prepared for a small ORC CHP is shown.•Deterministic and hybrid methods of optimization are applied.•A wide range of variation of ORC turbine flowpath are investigated.•Performance maps for the best results are shown.•Turbine mechanical qualification is performed.</description><subject>Algorithms</subject><subject>Axial turbine</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics (CFD)</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Gas turbines</subject><subject>Genetic algorithms</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Organic rankine cycle (ORC)</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Rankine cycle</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Simplex method</subject><subject>Stators</subject><subject>Steam electric power generation</subject><subject>Sweep angle</subject><subject>Toluene</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gYsB16nzymM2ghRfUCiKroebyY1OSJM6M63GX29KXLu6cDjnXM5HyCVnC854dt0ssEP_PiwEE6PEC5bqIzLjRS6TLC_SYzJjMmNJqpQ4JWchNIyxtNB6Rp7X2-g27gei6zva1xQ6Ct8OWhp3vnQd0rr3FGjYQNvSYKFFun5Z0i8IEekHQqQebb9HP9AwjNrmnJzU0Aa8-Ltz8nZ_97p8TFbrh6fl7SqxUqqYZCXXGuuSScAaSo6oNKZFkVWF0mkuLOgMNQdb2bKqQKaCA1dM1ohMjCY5J1dT79b3nzsM0TT9znfjSyOUynKhCpaPLjW5rO9D8FibrXcb8IPhzBzgmcZM8MwBnpngjbGbKYbjgr1Db4J12Fms3Dg3mqp3_xf8Avslemg</recordid><startdate>20200815</startdate><enddate>20200815</enddate><creator>Witanowski, Ł.</creator><creator>Klonowicz, P.</creator><creator>Lampart, P.</creator><creator>Suchocki, T.</creator><creator>Jędrzejewski, Ł.</creator><creator>Zaniewski, D.</creator><creator>Klimaszewski, P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200815</creationdate><title>Optimization of an axial turbine for a small scale ORC waste heat recovery system</title><author>Witanowski, Ł. ; Klonowicz, P. ; Lampart, P. ; Suchocki, T. ; Jędrzejewski, Ł. ; Zaniewski, D. ; Klimaszewski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Axial turbine</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics (CFD)</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Gas turbines</topic><topic>Genetic algorithms</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Organic rankine cycle (ORC)</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Rankine cycle</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Simplex method</topic><topic>Stators</topic><topic>Steam electric power generation</topic><topic>Sweep angle</topic><topic>Toluene</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witanowski, Ł.</creatorcontrib><creatorcontrib>Klonowicz, P.</creatorcontrib><creatorcontrib>Lampart, P.</creatorcontrib><creatorcontrib>Suchocki, T.</creatorcontrib><creatorcontrib>Jędrzejewski, Ł.</creatorcontrib><creatorcontrib>Zaniewski, D.</creatorcontrib><creatorcontrib>Klimaszewski, P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witanowski, Ł.</au><au>Klonowicz, P.</au><au>Lampart, P.</au><au>Suchocki, T.</au><au>Jędrzejewski, Ł.</au><au>Zaniewski, D.</au><au>Klimaszewski, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an axial turbine for a small scale ORC waste heat recovery system</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-08-15</date><risdate>2020</risdate><volume>205</volume><spage>118059</spage><pages>118059-</pages><artnum>118059</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Low power Organic Rankine Cycle (ORC) turbines are typically characterised by flow efficiencies much smaller than those of large power steam or gas turbines. The paper concentrates on a possibility of improving the flow efficiency of an ORC axial turbine working on toluene using several optimization algorithms such as a simplex method of Nelder-Mead, a hybrid of genetic algorithm with the Nelder-Mead method, as well as implicit filtering. Values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from 3D RANS computation of the flowpath geometry changing during the optimization process. Among the optimized geometric parameters are stator and rotor profile parametrization variables, rotor blade twist angle, circumferential lean and axial sweep angles, as well as parameters characterising the shape of endwall contours within the stator and rotor domain. The process of optimization leads to new 3D designs featuring increased efficiency compared to the original design, mainly due to a reduction in secondary and tip leakage flow losses as well as boundary layer, separation and leaving energy losses. The results especially highlight a large potential of the method of implicit filtering in optimizing multi-parameter objective functions. •A 45 kW turbine prepared for a small ORC CHP is shown.•Deterministic and hybrid methods of optimization are applied.•A wide range of variation of ORC turbine flowpath are investigated.•Performance maps for the best results are shown.•Turbine mechanical qualification is performed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118059</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-08, Vol.205, p.118059, Article 118059
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2446724807
source ScienceDirect Freedom Collection
subjects Algorithms
Axial turbine
Boundary layers
Computational fluid dynamics (CFD)
Efficiency
Filtration
Gas turbines
Genetic algorithms
Heat recovery
Heat recovery systems
Objective function
Optimization
Organic rankine cycle (ORC)
Parameterization
Parameters
Rankine cycle
Rotor blades
Rotor blades (turbomachinery)
Simplex method
Stators
Steam electric power generation
Sweep angle
Toluene
Waste heat recovery
Waste recovery
title Optimization of an axial turbine for a small scale ORC waste heat recovery system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20axial%20turbine%20for%20a%20small%20scale%20ORC%20waste%20heat%20recovery%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Witanowski,%20%C5%81.&rft.date=2020-08-15&rft.volume=205&rft.spage=118059&rft.pages=118059-&rft.artnum=118059&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118059&rft_dat=%3Cproquest_cross%3E2446724807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6b199efb03aefab1ee49e5886d849572ca96e91acdcbdda3521a1403fee026d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446724807&rft_id=info:pmid/&rfr_iscdi=true