Loading…

Comparison of forecasting models to predict concrete bridge decks performance

The accuracy of forecasting models for the prediction of an infrastructure's deterioration process plays a significant role in the estimation of optimal maintenance, rehabilitation, and replacement strategies. Numerous approaches have been developed to overcome the limitations of existing forec...

Full description

Saved in:
Bibliographic Details
Published in:Structural concrete : journal of the FIB 2020-08, Vol.21 (4), p.1240-1253
Main Authors: Santamaria Ariza, Monica, Zambon, Ivan, S. Sousa, Hélder, Campos e Matos, José António, Strauss, Alfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accuracy of forecasting models for the prediction of an infrastructure's deterioration process plays a significant role in the estimation of optimal maintenance, rehabilitation, and replacement strategies. Numerous approaches have been developed to overcome the limitations of existing forecasting models. In this article, a direct comparison is made between different models using the same input data to derive conclusions of their distinct performance. The models selected for the comparison were Markov, semi‐Markov, and hidden Markov models together with artificial neural networks (ANNs), which have been reported in literature as reliable deterioration prediction models. A quality of fit was performed to measure how well the observed data corresponded to the predicted values, and therefore objectively compare the performance of each model. The results demonstrated that the most accurate prediction was accomplished by the ANN model. Nevertheless, all models presented differences with respect to typical values of concrete decks life expectancy, which is attributed to the inherent difficulties of the database. Additionally, the problem of the visual inspection subjectivity was also regarded as one of the potential causes for the found deviations. Therefore, this article also discusses the shortcomings of current condition assessment practices and encourages future bridge management systems to replace the classical methods by more sophisticated and objective tools.
ISSN:1464-4177
1751-7648
DOI:10.1002/suco.201900434