Loading…

Exploring the near-surface at the lunar South Pole with geophysical tools

Geophysical imaging of the lunar near-surface structure will be key for in situ resource utilization, identification of hazards for crews and infrastructure, and answering science questions on the formation and interior of the Moon. The goal of this white paper is to highlight the value of ground-ba...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-09
Main Authors: Schmelzbach, C, Stähler, S, Schmerr, N C, Knapmeyer, M, Sollberger, D, Edme, P, Khan, A, Brinkman, N, Ferraioli, L, Robertsson, J O A, Giardini, D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schmelzbach, C
Stähler, S
Schmerr, N C
Knapmeyer, M
Sollberger, D
Edme, P
Khan, A
Brinkman, N
Ferraioli, L
Robertsson, J O A
Giardini, D
description Geophysical imaging of the lunar near-surface structure will be key for in situ resource utilization, identification of hazards for crews and infrastructure, and answering science questions on the formation and interior of the Moon. The goal of this white paper is to highlight the value of ground-based geophysical experiments by a crew and to outline a series of experiments to address key science questions. Specifically, we propose for the Artemis III crewed mission multidisciplinary investigations using geophysical methods such as seismic, seismological, ground penetrating radar, and electromagnetic techniques. We identified a series of prime near-surface targets for such geophysical investigations: (1) establishing a lunar fault monitoring observatory across a lobate scarp to study recent lunar seismicity, (2) determining the physical properties of the regolith at the landing site, (3) investigating the structure and in-situ properties of permanently shadowed regions in the context of the search for water ice and other cold-trapped volatiles, and (4) imaging the interior structure of the South-Pole Aitken basin. Beyond Artemis III, the Moon will serve as a comprehensive testbed for extra-terrestrial geophysics. Hence, lessons learned from human geophysical exploration of the Moon will be key for the exploration of the moons of Mars and near-Earth object(s), and prepare us for the human exploration of space beyond the Moon.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447134750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447134750</sourcerecordid><originalsourceid>FETCH-proquest_journals_24471347503</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_EHBdSJO0dS8V3Qm6L6FMX4RMzSSof28RP8DVPZxzVyyRSuXZQUu5YSnRJISQZSWLQiXsUr9mi350PQ8DcAfGZxR9Z1rgJnydjc54fsMYBn5FC_w5LtQDzsObxtZYHhAt7di6M5Yg_e2W7U_1_XjOZo-PCBSaCaN3S2qk1lWudFUI9d_rA4iLPG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447134750</pqid></control><display><type>article</type><title>Exploring the near-surface at the lunar South Pole with geophysical tools</title><source>Publicly Available Content Database</source><creator>Schmelzbach, C ; Stähler, S ; Schmerr, N C ; Knapmeyer, M ; Sollberger, D ; Edme, P ; Khan, A ; Brinkman, N ; Ferraioli, L ; Robertsson, J O A ; Giardini, D</creator><creatorcontrib>Schmelzbach, C ; Stähler, S ; Schmerr, N C ; Knapmeyer, M ; Sollberger, D ; Edme, P ; Khan, A ; Brinkman, N ; Ferraioli, L ; Robertsson, J O A ; Giardini, D</creatorcontrib><description>Geophysical imaging of the lunar near-surface structure will be key for in situ resource utilization, identification of hazards for crews and infrastructure, and answering science questions on the formation and interior of the Moon. The goal of this white paper is to highlight the value of ground-based geophysical experiments by a crew and to outline a series of experiments to address key science questions. Specifically, we propose for the Artemis III crewed mission multidisciplinary investigations using geophysical methods such as seismic, seismological, ground penetrating radar, and electromagnetic techniques. We identified a series of prime near-surface targets for such geophysical investigations: (1) establishing a lunar fault monitoring observatory across a lobate scarp to study recent lunar seismicity, (2) determining the physical properties of the regolith at the landing site, (3) investigating the structure and in-situ properties of permanently shadowed regions in the context of the search for water ice and other cold-trapped volatiles, and (4) imaging the interior structure of the South-Pole Aitken basin. Beyond Artemis III, the Moon will serve as a comprehensive testbed for extra-terrestrial geophysics. Hence, lessons learned from human geophysical exploration of the Moon will be key for the exploration of the moons of Mars and near-Earth object(s), and prepare us for the human exploration of space beyond the Moon.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cold traps ; Exploration ; Geophysical methods ; Geophysics ; Ground penetrating radar ; Hazard identification ; In situ resources utilization ; Lunar surface ; Mars satellites ; Moon ; Near-Earth Objects ; Physical properties ; Questions ; Regolith ; Seismicity ; Seismology ; South Pole ; Surface structure</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2447134750?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Schmelzbach, C</creatorcontrib><creatorcontrib>Stähler, S</creatorcontrib><creatorcontrib>Schmerr, N C</creatorcontrib><creatorcontrib>Knapmeyer, M</creatorcontrib><creatorcontrib>Sollberger, D</creatorcontrib><creatorcontrib>Edme, P</creatorcontrib><creatorcontrib>Khan, A</creatorcontrib><creatorcontrib>Brinkman, N</creatorcontrib><creatorcontrib>Ferraioli, L</creatorcontrib><creatorcontrib>Robertsson, J O A</creatorcontrib><creatorcontrib>Giardini, D</creatorcontrib><title>Exploring the near-surface at the lunar South Pole with geophysical tools</title><title>arXiv.org</title><description>Geophysical imaging of the lunar near-surface structure will be key for in situ resource utilization, identification of hazards for crews and infrastructure, and answering science questions on the formation and interior of the Moon. The goal of this white paper is to highlight the value of ground-based geophysical experiments by a crew and to outline a series of experiments to address key science questions. Specifically, we propose for the Artemis III crewed mission multidisciplinary investigations using geophysical methods such as seismic, seismological, ground penetrating radar, and electromagnetic techniques. We identified a series of prime near-surface targets for such geophysical investigations: (1) establishing a lunar fault monitoring observatory across a lobate scarp to study recent lunar seismicity, (2) determining the physical properties of the regolith at the landing site, (3) investigating the structure and in-situ properties of permanently shadowed regions in the context of the search for water ice and other cold-trapped volatiles, and (4) imaging the interior structure of the South-Pole Aitken basin. Beyond Artemis III, the Moon will serve as a comprehensive testbed for extra-terrestrial geophysics. Hence, lessons learned from human geophysical exploration of the Moon will be key for the exploration of the moons of Mars and near-Earth object(s), and prepare us for the human exploration of space beyond the Moon.</description><subject>Cold traps</subject><subject>Exploration</subject><subject>Geophysical methods</subject><subject>Geophysics</subject><subject>Ground penetrating radar</subject><subject>Hazard identification</subject><subject>In situ resources utilization</subject><subject>Lunar surface</subject><subject>Mars satellites</subject><subject>Moon</subject><subject>Near-Earth Objects</subject><subject>Physical properties</subject><subject>Questions</subject><subject>Regolith</subject><subject>Seismicity</subject><subject>Seismology</subject><subject>South Pole</subject><subject>Surface structure</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNissKwjAQRYMgWLT_EHBdSJO0dS8V3Qm6L6FMX4RMzSSof28RP8DVPZxzVyyRSuXZQUu5YSnRJISQZSWLQiXsUr9mi350PQ8DcAfGZxR9Z1rgJnydjc54fsMYBn5FC_w5LtQDzsObxtZYHhAt7di6M5Yg_e2W7U_1_XjOZo-PCBSaCaN3S2qk1lWudFUI9d_rA4iLPG0</recordid><startdate>20200927</startdate><enddate>20200927</enddate><creator>Schmelzbach, C</creator><creator>Stähler, S</creator><creator>Schmerr, N C</creator><creator>Knapmeyer, M</creator><creator>Sollberger, D</creator><creator>Edme, P</creator><creator>Khan, A</creator><creator>Brinkman, N</creator><creator>Ferraioli, L</creator><creator>Robertsson, J O A</creator><creator>Giardini, D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200927</creationdate><title>Exploring the near-surface at the lunar South Pole with geophysical tools</title><author>Schmelzbach, C ; Stähler, S ; Schmerr, N C ; Knapmeyer, M ; Sollberger, D ; Edme, P ; Khan, A ; Brinkman, N ; Ferraioli, L ; Robertsson, J O A ; Giardini, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24471347503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cold traps</topic><topic>Exploration</topic><topic>Geophysical methods</topic><topic>Geophysics</topic><topic>Ground penetrating radar</topic><topic>Hazard identification</topic><topic>In situ resources utilization</topic><topic>Lunar surface</topic><topic>Mars satellites</topic><topic>Moon</topic><topic>Near-Earth Objects</topic><topic>Physical properties</topic><topic>Questions</topic><topic>Regolith</topic><topic>Seismicity</topic><topic>Seismology</topic><topic>South Pole</topic><topic>Surface structure</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmelzbach, C</creatorcontrib><creatorcontrib>Stähler, S</creatorcontrib><creatorcontrib>Schmerr, N C</creatorcontrib><creatorcontrib>Knapmeyer, M</creatorcontrib><creatorcontrib>Sollberger, D</creatorcontrib><creatorcontrib>Edme, P</creatorcontrib><creatorcontrib>Khan, A</creatorcontrib><creatorcontrib>Brinkman, N</creatorcontrib><creatorcontrib>Ferraioli, L</creatorcontrib><creatorcontrib>Robertsson, J O A</creatorcontrib><creatorcontrib>Giardini, D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmelzbach, C</au><au>Stähler, S</au><au>Schmerr, N C</au><au>Knapmeyer, M</au><au>Sollberger, D</au><au>Edme, P</au><au>Khan, A</au><au>Brinkman, N</au><au>Ferraioli, L</au><au>Robertsson, J O A</au><au>Giardini, D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exploring the near-surface at the lunar South Pole with geophysical tools</atitle><jtitle>arXiv.org</jtitle><date>2020-09-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Geophysical imaging of the lunar near-surface structure will be key for in situ resource utilization, identification of hazards for crews and infrastructure, and answering science questions on the formation and interior of the Moon. The goal of this white paper is to highlight the value of ground-based geophysical experiments by a crew and to outline a series of experiments to address key science questions. Specifically, we propose for the Artemis III crewed mission multidisciplinary investigations using geophysical methods such as seismic, seismological, ground penetrating radar, and electromagnetic techniques. We identified a series of prime near-surface targets for such geophysical investigations: (1) establishing a lunar fault monitoring observatory across a lobate scarp to study recent lunar seismicity, (2) determining the physical properties of the regolith at the landing site, (3) investigating the structure and in-situ properties of permanently shadowed regions in the context of the search for water ice and other cold-trapped volatiles, and (4) imaging the interior structure of the South-Pole Aitken basin. Beyond Artemis III, the Moon will serve as a comprehensive testbed for extra-terrestrial geophysics. Hence, lessons learned from human geophysical exploration of the Moon will be key for the exploration of the moons of Mars and near-Earth object(s), and prepare us for the human exploration of space beyond the Moon.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2447134750
source Publicly Available Content Database
subjects Cold traps
Exploration
Geophysical methods
Geophysics
Ground penetrating radar
Hazard identification
In situ resources utilization
Lunar surface
Mars satellites
Moon
Near-Earth Objects
Physical properties
Questions
Regolith
Seismicity
Seismology
South Pole
Surface structure
title Exploring the near-surface at the lunar South Pole with geophysical tools
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exploring%20the%20near-surface%20at%20the%20lunar%20South%20Pole%20with%20geophysical%20tools&rft.jtitle=arXiv.org&rft.au=Schmelzbach,%20C&rft.date=2020-09-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2447134750%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_24471347503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447134750&rft_id=info:pmid/&rfr_iscdi=true