Loading…
Magnetic (quasi-)modular forms
A (folklore?) conjecture states that no holomorphic modular form \(F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]\) exists, where \(q=e^{2\pi i\tau}\), such that its anti-derivative \(\sum_{n=1}^\infty a_nq^n/n\) has integral coefficients in the \(q\)-expansion. A recent observation of Broadhur...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Paşol, Vicenţiu Zudilin, Wadim |
description | A (folklore?) conjecture states that no holomorphic modular form \(F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]\) exists, where \(q=e^{2\pi i\tau}\), such that its anti-derivative \(\sum_{n=1}^\infty a_nq^n/n\) has integral coefficients in the \(q\)-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms. |
doi_str_mv | 10.48550/arxiv.2009.14609 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447715056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447715056</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-ef41445872fdef7e5096805f65d813fbae0fae24ac74635009888cb317f8f71b3</originalsourceid><addsrcrecordid>eNotjk1PAjEUABsTEwnyA7wYEi566PravtePoyEKJBgv3El3t88sARZa1vjzJdHT3GZGiAcFFXoieIn5p_uuNECoFFoIN2KkjVHSo9Z3YlLKDgC0dZrIjMTjR_w6pkvXTJ_OQyydfD707bCPecp9PpR7cctxX9Lkn2OxeX_bzJdy_blYzV_XMgYKMjEqRPJOc5vYJYJgPRBbar0yXMcEHJPG2Di0hq5r3vumNsqxZ6dqMxazP-0p9-chlct21w_5eC1uNaJzioCs-QVGMT2O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447715056</pqid></control><display><type>article</type><title>Magnetic (quasi-)modular forms</title><source>Publicly Available Content Database</source><creator>Paşol, Vicenţiu ; Zudilin, Wadim</creator><creatorcontrib>Paşol, Vicenţiu ; Zudilin, Wadim</creatorcontrib><description>A (folklore?) conjecture states that no holomorphic modular form \(F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]\) exists, where \(q=e^{2\pi i\tau}\), such that its anti-derivative \(\sum_{n=1}^\infty a_nq^n/n\) has integral coefficients in the \(q\)-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.14609</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Derivatives ; Integrals ; Mathematical analysis ; Thermal expansion</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2447715056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Paşol, Vicenţiu</creatorcontrib><creatorcontrib>Zudilin, Wadim</creatorcontrib><title>Magnetic (quasi-)modular forms</title><title>arXiv.org</title><description>A (folklore?) conjecture states that no holomorphic modular form \(F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]\) exists, where \(q=e^{2\pi i\tau}\), such that its anti-derivative \(\sum_{n=1}^\infty a_nq^n/n\) has integral coefficients in the \(q\)-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.</description><subject>Analytic functions</subject><subject>Derivatives</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1PAjEUABsTEwnyA7wYEi566PravtePoyEKJBgv3El3t88sARZa1vjzJdHT3GZGiAcFFXoieIn5p_uuNECoFFoIN2KkjVHSo9Z3YlLKDgC0dZrIjMTjR_w6pkvXTJ_OQyydfD707bCPecp9PpR7cctxX9Lkn2OxeX_bzJdy_blYzV_XMgYKMjEqRPJOc5vYJYJgPRBbar0yXMcEHJPG2Di0hq5r3vumNsqxZ6dqMxazP-0p9-chlct21w_5eC1uNaJzioCs-QVGMT2O</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Paşol, Vicenţiu</creator><creator>Zudilin, Wadim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220203</creationdate><title>Magnetic (quasi-)modular forms</title><author>Paşol, Vicenţiu ; Zudilin, Wadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-ef41445872fdef7e5096805f65d813fbae0fae24ac74635009888cb317f8f71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>Derivatives</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Paşol, Vicenţiu</creatorcontrib><creatorcontrib>Zudilin, Wadim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paşol, Vicenţiu</au><au>Zudilin, Wadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic (quasi-)modular forms</atitle><jtitle>arXiv.org</jtitle><date>2022-02-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A (folklore?) conjecture states that no holomorphic modular form \(F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]\) exists, where \(q=e^{2\pi i\tau}\), such that its anti-derivative \(\sum_{n=1}^\infty a_nq^n/n\) has integral coefficients in the \(q\)-expansion. A recent observation of Broadhurst and Zudilin, rigorously accomplished by Li and Neururer, led to examples of meromorphic modular forms possessing the integrality property. In this note we investigate the arithmetic phenomenon from a systematic perspective and discuss related transcendental extensions of the differentially closed ring of quasi-modular forms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.14609</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2447715056 |
source | Publicly Available Content Database |
subjects | Analytic functions Derivatives Integrals Mathematical analysis Thermal expansion |
title | Magnetic (quasi-)modular forms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20(quasi-)modular%20forms&rft.jtitle=arXiv.org&rft.au=Pa%C5%9Fol,%20Vicen%C5%A3iu&rft.date=2022-02-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.14609&rft_dat=%3Cproquest%3E2447715056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-ef41445872fdef7e5096805f65d813fbae0fae24ac74635009888cb317f8f71b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447715056&rft_id=info:pmid/&rfr_iscdi=true |