Loading…
Spatial Statistical Models: an overview under the Bayesian Approach
Spatial documentation is exponentially increasing given the availability of Big IoT Data, enabled by the devices miniaturization and data storage capacity. Bayesian spatial statistics is a useful statistical tool to determine the dependence structure and hidden patterns over space through prior know...
Saved in:
Published in: | arXiv.org 2020-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatial documentation is exponentially increasing given the availability of Big IoT Data, enabled by the devices miniaturization and data storage capacity. Bayesian spatial statistics is a useful statistical tool to determine the dependence structure and hidden patterns over space through prior knowledge and data likelihood. Nevertheless, this modeling class is not well explored as the classification and regression machine learning models given their simplicity and often weak (data) independence supposition. In this manner, this systematic review aimed to unravel the main models presented in the literature in the past 20 years, identify gaps, and research opportunities. Elements such as random fields, spatial domains, prior specification, covariance function, and numerical approximations were discussed. This work explored the two subclasses of spatial smoothing global and local. |
---|---|
ISSN: | 2331-8422 |