Loading…

A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems

Summary Three‐dimensional (3D) rapid transient acoustic problems are difficult to solve numerically when dealing with large geometries, because numerical methods based on geometry discretization (mesh), such as the boundary element method (BEM) or the finite element method (FEM), often require to so...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2020-11, Vol.121 (21), p.4734-4767
Main Authors: Mavaleix‐Marchessoux, Damien, Bonnet, Marc, Chaillat, Stéphanie, Leblé, Bruno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343
cites cdi_FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343
container_end_page 4767
container_issue 21
container_start_page 4734
container_title International journal for numerical methods in engineering
container_volume 121
creator Mavaleix‐Marchessoux, Damien
Bonnet, Marc
Chaillat, Stéphanie
Leblé, Bruno
description Summary Three‐dimensional (3D) rapid transient acoustic problems are difficult to solve numerically when dealing with large geometries, because numerical methods based on geometry discretization (mesh), such as the boundary element method (BEM) or the finite element method (FEM), often require to solve a linear system (from the spacial discretization) for each time step. We propose a numerical method to efficiently deal with 3D rapid transient acoustic problems set in large exterior domains. Using the Z‐transform and the convolution quadrature method, we first present a straightforward way to reframe the problem to the solving of a large amount (the number of time steps, M) of frequency‐domain BEMs. Then, taking advantage of a well‐designed high‐frequency approximation, we drastically reduce the number of frequency‐domain BEMs to be solved, with little loss of accuracy. The complexity of the resulting numerical procedure turns out to be O(1) in regard to the time discretization and O(NlogN) for the spacial discretization, the latter being prescribed by the complexity of the used fast BEM solver. Examples of applications are proposed to illustrate the efficiency of the procedure in the case of fluid‐structure interaction: the radiation of an acoustic wave into a fluid by a deformable structure with prescribed velocity and the scattering of an abrupt wave by simple and realistic geometries.
doi_str_mv 10.1002/nme.6488
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447734771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447734771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOpk2VV8ZIKbGDDJnLicZMqj2KnlOz4BJZ8H1_CpGXLYmTN-OjemUvIOWcTzpi4amqYTMM4PiAjzhIVMMHUIRnhVxJEScyPyYn3K8Y4j5gcke8Ztdp3NGs3jdGup1BBDU1Ha-iK1tCNL5sl7Qqgrz-fX53Tjbetq6luDC3KZYFD6-BtA03eU71eu_ajrHVXto2nCNJKuyUg5HNdAeo4GDpToodHSFd0p1kOllv9DhQVMlzBn5IjqysPZ3_vmLzcXD_P74LF0-39fLYIcilUHOShMUZaEDnLlVZyCjKGWBvNM6YypSwXXFqR2cQIpVgURVozgCxTDCIrQzkmF3tdNMYzfJeu2o3DxXwqwlApicWRutxTuWu9d2DTtcM7XZ9ylg65p5h7OuSOaLBHt2UF_b9c-vhwveN_AQzUjIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447734771</pqid></control><display><type>article</type><title>A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mavaleix‐Marchessoux, Damien ; Bonnet, Marc ; Chaillat, Stéphanie ; Leblé, Bruno</creator><creatorcontrib>Mavaleix‐Marchessoux, Damien ; Bonnet, Marc ; Chaillat, Stéphanie ; Leblé, Bruno</creatorcontrib><description>Summary Three‐dimensional (3D) rapid transient acoustic problems are difficult to solve numerically when dealing with large geometries, because numerical methods based on geometry discretization (mesh), such as the boundary element method (BEM) or the finite element method (FEM), often require to solve a linear system (from the spacial discretization) for each time step. We propose a numerical method to efficiently deal with 3D rapid transient acoustic problems set in large exterior domains. Using the Z‐transform and the convolution quadrature method, we first present a straightforward way to reframe the problem to the solving of a large amount (the number of time steps, M) of frequency‐domain BEMs. Then, taking advantage of a well‐designed high‐frequency approximation, we drastically reduce the number of frequency‐domain BEMs to be solved, with little loss of accuracy. The complexity of the resulting numerical procedure turns out to be O(1) in regard to the time discretization and O(NlogN) for the spacial discretization, the latter being prescribed by the complexity of the used fast BEM solver. Examples of applications are proposed to illustrate the efficiency of the procedure in the case of fluid‐structure interaction: the radiation of an acoustic wave into a fluid by a deformable structure with prescribed velocity and the scattering of an abrupt wave by simple and realistic geometries.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6488</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acoustic waves ; Acoustics ; Boundary element method ; Complexity ; Convolution ; convolution quadrature method ; Discretization ; Domains ; fast BEMs ; Finite element method ; fluid‐structure problems ; Formability ; Helmholtz ; Mathematical analysis ; Numerical analysis ; Numerical methods</subject><ispartof>International journal for numerical methods in engineering, 2020-11, Vol.121 (21), p.4734-4767</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343</citedby><cites>FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343</cites><orcidid>0000-0001-8478-4647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mavaleix‐Marchessoux, Damien</creatorcontrib><creatorcontrib>Bonnet, Marc</creatorcontrib><creatorcontrib>Chaillat, Stéphanie</creatorcontrib><creatorcontrib>Leblé, Bruno</creatorcontrib><title>A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems</title><title>International journal for numerical methods in engineering</title><description>Summary Three‐dimensional (3D) rapid transient acoustic problems are difficult to solve numerically when dealing with large geometries, because numerical methods based on geometry discretization (mesh), such as the boundary element method (BEM) or the finite element method (FEM), often require to solve a linear system (from the spacial discretization) for each time step. We propose a numerical method to efficiently deal with 3D rapid transient acoustic problems set in large exterior domains. Using the Z‐transform and the convolution quadrature method, we first present a straightforward way to reframe the problem to the solving of a large amount (the number of time steps, M) of frequency‐domain BEMs. Then, taking advantage of a well‐designed high‐frequency approximation, we drastically reduce the number of frequency‐domain BEMs to be solved, with little loss of accuracy. The complexity of the resulting numerical procedure turns out to be O(1) in regard to the time discretization and O(NlogN) for the spacial discretization, the latter being prescribed by the complexity of the used fast BEM solver. Examples of applications are proposed to illustrate the efficiency of the procedure in the case of fluid‐structure interaction: the radiation of an acoustic wave into a fluid by a deformable structure with prescribed velocity and the scattering of an abrupt wave by simple and realistic geometries.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Boundary element method</subject><subject>Complexity</subject><subject>Convolution</subject><subject>convolution quadrature method</subject><subject>Discretization</subject><subject>Domains</subject><subject>fast BEMs</subject><subject>Finite element method</subject><subject>fluid‐structure problems</subject><subject>Formability</subject><subject>Helmholtz</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SOpk2VV8ZIKbGDDJnLicZMqj2KnlOz4BJZ8H1_CpGXLYmTN-OjemUvIOWcTzpi4amqYTMM4PiAjzhIVMMHUIRnhVxJEScyPyYn3K8Y4j5gcke8Ztdp3NGs3jdGup1BBDU1Ha-iK1tCNL5sl7Qqgrz-fX53Tjbetq6luDC3KZYFD6-BtA03eU71eu_ajrHVXto2nCNJKuyUg5HNdAeo4GDpToodHSFd0p1kOllv9DhQVMlzBn5IjqysPZ3_vmLzcXD_P74LF0-39fLYIcilUHOShMUZaEDnLlVZyCjKGWBvNM6YypSwXXFqR2cQIpVgURVozgCxTDCIrQzkmF3tdNMYzfJeu2o3DxXwqwlApicWRutxTuWu9d2DTtcM7XZ9ylg65p5h7OuSOaLBHt2UF_b9c-vhwveN_AQzUjIs</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Mavaleix‐Marchessoux, Damien</creator><creator>Bonnet, Marc</creator><creator>Chaillat, Stéphanie</creator><creator>Leblé, Bruno</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8478-4647</orcidid></search><sort><creationdate>20201115</creationdate><title>A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems</title><author>Mavaleix‐Marchessoux, Damien ; Bonnet, Marc ; Chaillat, Stéphanie ; Leblé, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Boundary element method</topic><topic>Complexity</topic><topic>Convolution</topic><topic>convolution quadrature method</topic><topic>Discretization</topic><topic>Domains</topic><topic>fast BEMs</topic><topic>Finite element method</topic><topic>fluid‐structure problems</topic><topic>Formability</topic><topic>Helmholtz</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavaleix‐Marchessoux, Damien</creatorcontrib><creatorcontrib>Bonnet, Marc</creatorcontrib><creatorcontrib>Chaillat, Stéphanie</creatorcontrib><creatorcontrib>Leblé, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mavaleix‐Marchessoux, Damien</au><au>Bonnet, Marc</au><au>Chaillat, Stéphanie</au><au>Leblé, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>121</volume><issue>21</issue><spage>4734</spage><epage>4767</epage><pages>4734-4767</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary Three‐dimensional (3D) rapid transient acoustic problems are difficult to solve numerically when dealing with large geometries, because numerical methods based on geometry discretization (mesh), such as the boundary element method (BEM) or the finite element method (FEM), often require to solve a linear system (from the spacial discretization) for each time step. We propose a numerical method to efficiently deal with 3D rapid transient acoustic problems set in large exterior domains. Using the Z‐transform and the convolution quadrature method, we first present a straightforward way to reframe the problem to the solving of a large amount (the number of time steps, M) of frequency‐domain BEMs. Then, taking advantage of a well‐designed high‐frequency approximation, we drastically reduce the number of frequency‐domain BEMs to be solved, with little loss of accuracy. The complexity of the resulting numerical procedure turns out to be O(1) in regard to the time discretization and O(NlogN) for the spacial discretization, the latter being prescribed by the complexity of the used fast BEM solver. Examples of applications are proposed to illustrate the efficiency of the procedure in the case of fluid‐structure interaction: the radiation of an acoustic wave into a fluid by a deformable structure with prescribed velocity and the scattering of an abrupt wave by simple and realistic geometries.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6488</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-8478-4647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2020-11, Vol.121 (21), p.4734-4767
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2447734771
source Wiley-Blackwell Read & Publish Collection
subjects Acoustic waves
Acoustics
Boundary element method
Complexity
Convolution
convolution quadrature method
Discretization
Domains
fast BEMs
Finite element method
fluid‐structure problems
Formability
Helmholtz
Mathematical analysis
Numerical analysis
Numerical methods
title A fast boundary element method using the Z‐transform and high‐frequency approximations for large‐scale three‐dimensional transient wave problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20boundary%20element%20method%20using%20the%20Z%E2%80%90transform%20and%20high%E2%80%90frequency%20approximations%20for%20large%E2%80%90scale%20three%E2%80%90dimensional%20transient%20wave%20problems&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mavaleix%E2%80%90Marchessoux,%20Damien&rft.date=2020-11-15&rft.volume=121&rft.issue=21&rft.spage=4734&rft.epage=4767&rft.pages=4734-4767&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6488&rft_dat=%3Cproquest_cross%3E2447734771%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3278-c4ddd3fe2c0c7a736e38e8ada1b07b77f1213f2bf9d2770555aa0eebb70e5f343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447734771&rft_id=info:pmid/&rfr_iscdi=true