Loading…

Binder less-integrated freestanding carbon film derived from pitch as light weight and high-power anode for sodium-ion battery

To realize the large scale application of sodium-ion batteries (SIBs), a stable, cost-effective anode is desired. Pitch is a potential low-cost precursor to synthesize soft carbon anode for SIBs. However, it exhibits poor Na-ion storage. Herein, we report the facile synthesis of pitch derived-binder...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2020-09, Vol.353, p.136566, Article 136566
Main Authors: Ghosh, Sourav, Kumar, V. Kiran, Kumar, Sarode Krishna, Sunkari, Upendar, Biswas, Sanjay, Martha, Surendra Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To realize the large scale application of sodium-ion batteries (SIBs), a stable, cost-effective anode is desired. Pitch is a potential low-cost precursor to synthesize soft carbon anode for SIBs. However, it exhibits poor Na-ion storage. Herein, we report the facile synthesis of pitch derived-binder less-metal free-freestanding anode for storing Na-ions by one-step pyrolysis process between the temperature range 700–1000 °C under nitrogen atmosphere. We replace conventional Cu-current collectors with non-graphitic carbon fiber (CFs) mats. The electrode architecture not only eliminates the metallic current collector, conductive diluents, and inactive organic binder but also provides an ideal porous network for sodium-ion and electrolyte diffusion into the bulk of the electrode. The freestanding electrode delivers a reversible capacity of 310 mAh g−1 in comparison to 180 mAh g−1 for the conventional electrode at the current density of 50 mA g−1. Good C rate performance and cycling stability over 500 cycles (at 1 A g−1) of this freestanding electrode indicate as a promising anode for SIBs. The evolution of plateau region capacity (
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.136566