Loading…
Low-temperature mineralization sintering process of bioactive glass nanoparticles
Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were...
Saved in:
Published in: | Journal of the Ceramic Society of Japan 2020/10/01, Vol.128(10), pp.783-789 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3 |
container_end_page | 789 |
container_issue | 10 |
container_start_page | 783 |
container_title | Journal of the Ceramic Society of Japan |
container_volume | 128 |
creator | SEO, Yeongjun GOTO, Tomoyo NISHIDA, Hisataka CHO, Sung Hun ZARKOV, Aleksej YAMAMOTO, Taisei SEKINO, Tohru |
description | Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature. |
doi_str_mv | 10.2109/jcersj2.20126 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447963706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447963706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtH7wuet-ZrN8lRilWhIIKeQ5pNapZtsiapon-96Qc9vWH4zZuZB8AtgjOMoLjvtYmpxzMMEW7PwAQRyuu2Ic15qTnHNWSUXIKrlHoIW0wJn4C3Zfips9mMJqq8jabaOF_Kwf2p7IKvkvPZROfX1RiDNilVwVYrF5TO7ttU60GVllc-jCpmpweTrsGFVUMyN0edgo_F4_v8uV6-Pr3MH5a1bgjNtbKiEwyuIEUUaW4N0W1HGtg0SiFmGcOqE5jycrNArOEKcQGhQUhYCIntyBTcHXzLYV9bk7Lswzb6slJiSploCYNtoeoDpWNIKRorx-g2Kv5KBOUuNXlMTe5TK_ziwPcpq7U50cfvTjTCfOewk_3gCdCfKkrjyT-863p7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447963706</pqid></control><display><type>article</type><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) - Open Access English articles</source><creator>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</creator><creatorcontrib>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</creatorcontrib><description>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</description><identifier>ISSN: 1882-0743</identifier><identifier>EISSN: 1348-6535</identifier><identifier>DOI: 10.2109/jcersj2.20126</identifier><language>eng</language><publisher>Tokyo: The Ceramic Society of Japan</publisher><subject>Aqueous solutions ; Bioactive glass ; Bioglass ; Biological activity ; Biomedical materials ; Biomineralization ; Body fluids ; Calcium phosphate ; Calcium phosphates ; Diamond pyramid hardness ; Distilled water ; In vitro methods and tests ; Low temperature ; Low-temperature sintering ; Mineralization ; Nanoparticles ; Phosphorus pentoxide ; Silicon dioxide ; Simulated body fluid ; Sintering ; Sol-gel processes</subject><ispartof>Journal of the Ceramic Society of Japan, 2020/10/01, Vol.128(10), pp.783-789</ispartof><rights>2020 The Ceramic Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</citedby><cites>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,27924,27925</link.rule.ids></links><search><creatorcontrib>SEO, Yeongjun</creatorcontrib><creatorcontrib>GOTO, Tomoyo</creatorcontrib><creatorcontrib>NISHIDA, Hisataka</creatorcontrib><creatorcontrib>CHO, Sung Hun</creatorcontrib><creatorcontrib>ZARKOV, Aleksej</creatorcontrib><creatorcontrib>YAMAMOTO, Taisei</creatorcontrib><creatorcontrib>SEKINO, Tohru</creatorcontrib><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><title>Journal of the Ceramic Society of Japan</title><addtitle>J. Ceram. Soc. Japan</addtitle><description>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</description><subject>Aqueous solutions</subject><subject>Bioactive glass</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biomineralization</subject><subject>Body fluids</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Diamond pyramid hardness</subject><subject>Distilled water</subject><subject>In vitro methods and tests</subject><subject>Low temperature</subject><subject>Low-temperature sintering</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>Phosphorus pentoxide</subject><subject>Silicon dioxide</subject><subject>Simulated body fluid</subject><subject>Sintering</subject><subject>Sol-gel processes</subject><issn>1882-0743</issn><issn>1348-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKtH7wuet-ZrN8lRilWhIIKeQ5pNapZtsiapon-96Qc9vWH4zZuZB8AtgjOMoLjvtYmpxzMMEW7PwAQRyuu2Ic15qTnHNWSUXIKrlHoIW0wJn4C3Zfips9mMJqq8jabaOF_Kwf2p7IKvkvPZROfX1RiDNilVwVYrF5TO7ttU60GVllc-jCpmpweTrsGFVUMyN0edgo_F4_v8uV6-Pr3MH5a1bgjNtbKiEwyuIEUUaW4N0W1HGtg0SiFmGcOqE5jycrNArOEKcQGhQUhYCIntyBTcHXzLYV9bk7Lswzb6slJiSploCYNtoeoDpWNIKRorx-g2Kv5KBOUuNXlMTe5TK_ziwPcpq7U50cfvTjTCfOewk_3gCdCfKkrjyT-863p7</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>SEO, Yeongjun</creator><creator>GOTO, Tomoyo</creator><creator>NISHIDA, Hisataka</creator><creator>CHO, Sung Hun</creator><creator>ZARKOV, Aleksej</creator><creator>YAMAMOTO, Taisei</creator><creator>SEKINO, Tohru</creator><general>The Ceramic Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201001</creationdate><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><author>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bioactive glass</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biomineralization</topic><topic>Body fluids</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Diamond pyramid hardness</topic><topic>Distilled water</topic><topic>In vitro methods and tests</topic><topic>Low temperature</topic><topic>Low-temperature sintering</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>Phosphorus pentoxide</topic><topic>Silicon dioxide</topic><topic>Simulated body fluid</topic><topic>Sintering</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEO, Yeongjun</creatorcontrib><creatorcontrib>GOTO, Tomoyo</creatorcontrib><creatorcontrib>NISHIDA, Hisataka</creatorcontrib><creatorcontrib>CHO, Sung Hun</creatorcontrib><creatorcontrib>ZARKOV, Aleksej</creatorcontrib><creatorcontrib>YAMAMOTO, Taisei</creatorcontrib><creatorcontrib>SEKINO, Tohru</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Ceramic Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEO, Yeongjun</au><au>GOTO, Tomoyo</au><au>NISHIDA, Hisataka</au><au>CHO, Sung Hun</au><au>ZARKOV, Aleksej</au><au>YAMAMOTO, Taisei</au><au>SEKINO, Tohru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature mineralization sintering process of bioactive glass nanoparticles</atitle><jtitle>Journal of the Ceramic Society of Japan</jtitle><addtitle>J. Ceram. Soc. Japan</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>128</volume><issue>10</issue><spage>783</spage><epage>789</epage><pages>783-789</pages><issn>1882-0743</issn><eissn>1348-6535</eissn><abstract>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</abstract><cop>Tokyo</cop><pub>The Ceramic Society of Japan</pub><doi>10.2109/jcersj2.20126</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1882-0743 |
ispartof | Journal of the Ceramic Society of Japan, 2020/10/01, Vol.128(10), pp.783-789 |
issn | 1882-0743 1348-6535 |
language | eng |
recordid | cdi_proquest_journals_2447963706 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) - Open Access English articles |
subjects | Aqueous solutions Bioactive glass Bioglass Biological activity Biomedical materials Biomineralization Body fluids Calcium phosphate Calcium phosphates Diamond pyramid hardness Distilled water In vitro methods and tests Low temperature Low-temperature sintering Mineralization Nanoparticles Phosphorus pentoxide Silicon dioxide Simulated body fluid Sintering Sol-gel processes |
title | Low-temperature mineralization sintering process of bioactive glass nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20mineralization%20sintering%20process%20of%20bioactive%20glass%20nanoparticles&rft.jtitle=Journal%20of%20the%20Ceramic%20Society%20of%20Japan&rft.au=SEO,%20Yeongjun&rft.date=2020-10-01&rft.volume=128&rft.issue=10&rft.spage=783&rft.epage=789&rft.pages=783-789&rft.issn=1882-0743&rft.eissn=1348-6535&rft_id=info:doi/10.2109/jcersj2.20126&rft_dat=%3Cproquest_cross%3E2447963706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447963706&rft_id=info:pmid/&rfr_iscdi=true |