Loading…

Low-temperature mineralization sintering process of bioactive glass nanoparticles

Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Ceramic Society of Japan 2020/10/01, Vol.128(10), pp.783-789
Main Authors: SEO, Yeongjun, GOTO, Tomoyo, NISHIDA, Hisataka, CHO, Sung Hun, ZARKOV, Aleksej, YAMAMOTO, Taisei, SEKINO, Tohru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3
cites cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3
container_end_page 789
container_issue 10
container_start_page 783
container_title Journal of the Ceramic Society of Japan
container_volume 128
creator SEO, Yeongjun
GOTO, Tomoyo
NISHIDA, Hisataka
CHO, Sung Hun
ZARKOV, Aleksej
YAMAMOTO, Taisei
SEKINO, Tohru
description Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.
doi_str_mv 10.2109/jcersj2.20126
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447963706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447963706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtH7wuet-ZrN8lRilWhIIKeQ5pNapZtsiapon-96Qc9vWH4zZuZB8AtgjOMoLjvtYmpxzMMEW7PwAQRyuu2Ic15qTnHNWSUXIKrlHoIW0wJn4C3Zfips9mMJqq8jabaOF_Kwf2p7IKvkvPZROfX1RiDNilVwVYrF5TO7ttU60GVllc-jCpmpweTrsGFVUMyN0edgo_F4_v8uV6-Pr3MH5a1bgjNtbKiEwyuIEUUaW4N0W1HGtg0SiFmGcOqE5jycrNArOEKcQGhQUhYCIntyBTcHXzLYV9bk7Lswzb6slJiSploCYNtoeoDpWNIKRorx-g2Kv5KBOUuNXlMTe5TK_ziwPcpq7U50cfvTjTCfOewk_3gCdCfKkrjyT-863p7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447963706</pqid></control><display><type>article</type><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) - Open Access English articles</source><creator>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</creator><creatorcontrib>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</creatorcontrib><description>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</description><identifier>ISSN: 1882-0743</identifier><identifier>EISSN: 1348-6535</identifier><identifier>DOI: 10.2109/jcersj2.20126</identifier><language>eng</language><publisher>Tokyo: The Ceramic Society of Japan</publisher><subject>Aqueous solutions ; Bioactive glass ; Bioglass ; Biological activity ; Biomedical materials ; Biomineralization ; Body fluids ; Calcium phosphate ; Calcium phosphates ; Diamond pyramid hardness ; Distilled water ; In vitro methods and tests ; Low temperature ; Low-temperature sintering ; Mineralization ; Nanoparticles ; Phosphorus pentoxide ; Silicon dioxide ; Simulated body fluid ; Sintering ; Sol-gel processes</subject><ispartof>Journal of the Ceramic Society of Japan, 2020/10/01, Vol.128(10), pp.783-789</ispartof><rights>2020 The Ceramic Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</citedby><cites>FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1882,27924,27925</link.rule.ids></links><search><creatorcontrib>SEO, Yeongjun</creatorcontrib><creatorcontrib>GOTO, Tomoyo</creatorcontrib><creatorcontrib>NISHIDA, Hisataka</creatorcontrib><creatorcontrib>CHO, Sung Hun</creatorcontrib><creatorcontrib>ZARKOV, Aleksej</creatorcontrib><creatorcontrib>YAMAMOTO, Taisei</creatorcontrib><creatorcontrib>SEKINO, Tohru</creatorcontrib><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><title>Journal of the Ceramic Society of Japan</title><addtitle>J. Ceram. Soc. Japan</addtitle><description>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</description><subject>Aqueous solutions</subject><subject>Bioactive glass</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biomineralization</subject><subject>Body fluids</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Diamond pyramid hardness</subject><subject>Distilled water</subject><subject>In vitro methods and tests</subject><subject>Low temperature</subject><subject>Low-temperature sintering</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>Phosphorus pentoxide</subject><subject>Silicon dioxide</subject><subject>Simulated body fluid</subject><subject>Sintering</subject><subject>Sol-gel processes</subject><issn>1882-0743</issn><issn>1348-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKtH7wuet-ZrN8lRilWhIIKeQ5pNapZtsiapon-96Qc9vWH4zZuZB8AtgjOMoLjvtYmpxzMMEW7PwAQRyuu2Ic15qTnHNWSUXIKrlHoIW0wJn4C3Zfips9mMJqq8jabaOF_Kwf2p7IKvkvPZROfX1RiDNilVwVYrF5TO7ttU60GVllc-jCpmpweTrsGFVUMyN0edgo_F4_v8uV6-Pr3MH5a1bgjNtbKiEwyuIEUUaW4N0W1HGtg0SiFmGcOqE5jycrNArOEKcQGhQUhYCIntyBTcHXzLYV9bk7Lswzb6slJiSploCYNtoeoDpWNIKRorx-g2Kv5KBOUuNXlMTe5TK_ziwPcpq7U50cfvTjTCfOewk_3gCdCfKkrjyT-863p7</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>SEO, Yeongjun</creator><creator>GOTO, Tomoyo</creator><creator>NISHIDA, Hisataka</creator><creator>CHO, Sung Hun</creator><creator>ZARKOV, Aleksej</creator><creator>YAMAMOTO, Taisei</creator><creator>SEKINO, Tohru</creator><general>The Ceramic Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20201001</creationdate><title>Low-temperature mineralization sintering process of bioactive glass nanoparticles</title><author>SEO, Yeongjun ; GOTO, Tomoyo ; NISHIDA, Hisataka ; CHO, Sung Hun ; ZARKOV, Aleksej ; YAMAMOTO, Taisei ; SEKINO, Tohru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bioactive glass</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biomineralization</topic><topic>Body fluids</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Diamond pyramid hardness</topic><topic>Distilled water</topic><topic>In vitro methods and tests</topic><topic>Low temperature</topic><topic>Low-temperature sintering</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>Phosphorus pentoxide</topic><topic>Silicon dioxide</topic><topic>Simulated body fluid</topic><topic>Sintering</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEO, Yeongjun</creatorcontrib><creatorcontrib>GOTO, Tomoyo</creatorcontrib><creatorcontrib>NISHIDA, Hisataka</creatorcontrib><creatorcontrib>CHO, Sung Hun</creatorcontrib><creatorcontrib>ZARKOV, Aleksej</creatorcontrib><creatorcontrib>YAMAMOTO, Taisei</creatorcontrib><creatorcontrib>SEKINO, Tohru</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the Ceramic Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEO, Yeongjun</au><au>GOTO, Tomoyo</au><au>NISHIDA, Hisataka</au><au>CHO, Sung Hun</au><au>ZARKOV, Aleksej</au><au>YAMAMOTO, Taisei</au><au>SEKINO, Tohru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature mineralization sintering process of bioactive glass nanoparticles</atitle><jtitle>Journal of the Ceramic Society of Japan</jtitle><addtitle>J. Ceram. Soc. Japan</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>128</volume><issue>10</issue><spage>783</spage><epage>789</epage><pages>783-789</pages><issn>1882-0743</issn><eissn>1348-6535</eissn><abstract>Inspired by biomineralization in nature which provides the formation of various inorganic minerals under mild temperatures and pressures conditions, we report here the low-temperature mineralization sintering process (LMSP) of SiO2–CaO–P2O5 bioactive glass nanoparticles (BGNs). The ternary BGNs were successfully synthesized by an alkali mediated sol–gel method. The obtained glass nanoparticles, having around 30 nm in diameter, were sintered in a mold under an applied pressure of 300 MPa at 120 °C with an aid of small amount of simulated body fluid (SBF) solution. Under the condition, BGNs were densified through biomineralization with a formation of amorphous calcium phosphate phase which filled up the interparticle boundaries and bonded each glass nanoparticles. The relative density and Vickers hardness of the sintered BGNs were sufficiently high, 86 % and 2.09 GPa, respectively, although the low sintering temperature. These values were higher than those of BGNs sintered by the same procedure with no aqueous solution (57 %, 0.68 GPa), distilled water (77 %, 1.52 GPa), and even the conventionally sintered BGNs at 550 °C (69 %, 0.93 GPa) and 850 °C (81 %, 2.02 GPa). These results suggest that the LMSP is a promising and cost-effective process for obtaining bioactive glass and ceramic bulk materials at low temperature.</abstract><cop>Tokyo</cop><pub>The Ceramic Society of Japan</pub><doi>10.2109/jcersj2.20126</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-0743
ispartof Journal of the Ceramic Society of Japan, 2020/10/01, Vol.128(10), pp.783-789
issn 1882-0743
1348-6535
language eng
recordid cdi_proquest_journals_2447963706
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) - Open Access English articles
subjects Aqueous solutions
Bioactive glass
Bioglass
Biological activity
Biomedical materials
Biomineralization
Body fluids
Calcium phosphate
Calcium phosphates
Diamond pyramid hardness
Distilled water
In vitro methods and tests
Low temperature
Low-temperature sintering
Mineralization
Nanoparticles
Phosphorus pentoxide
Silicon dioxide
Simulated body fluid
Sintering
Sol-gel processes
title Low-temperature mineralization sintering process of bioactive glass nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20mineralization%20sintering%20process%20of%20bioactive%20glass%20nanoparticles&rft.jtitle=Journal%20of%20the%20Ceramic%20Society%20of%20Japan&rft.au=SEO,%20Yeongjun&rft.date=2020-10-01&rft.volume=128&rft.issue=10&rft.spage=783&rft.epage=789&rft.pages=783-789&rft.issn=1882-0743&rft.eissn=1348-6535&rft_id=info:doi/10.2109/jcersj2.20126&rft_dat=%3Cproquest_cross%3E2447963706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-af9d970b04141c8fe3c6d35055aa17f772ad924807491758a18900e119f003fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2447963706&rft_id=info:pmid/&rfr_iscdi=true