Loading…

Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite

We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enst...

Full description

Saved in:
Bibliographic Details
Published in:Meteoritics & planetary science 2020-08, Vol.55 (8), p.n/a
Main Authors: Fukimoto, Kanta, Miyahara, Masaaki, Sakai, Takeshi, Ohfuji, Hiroaki, Tomioka, Naotaka, Kodama, Yu, Ohtani, Eiji, Yamaguchi, Akira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3
cites cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3
container_end_page n/a
container_issue 8
container_start_page
container_title Meteoritics & planetary science
container_volume 55
creator Fukimoto, Kanta
Miyahara, Masaaki
Sakai, Takeshi
Ohfuji, Hiroaki
Tomioka, Naotaka
Kodama, Yu
Ohtani, Eiji
Yamaguchi, Akira
description We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.
doi_str_mv 10.1111/maps.13543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448266865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448266865</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</originalsourceid><addsrcrecordid>eNp9kElOwzAUhi0EEqWw4QSR2CGl2PGQeFkqJqkIJOjacmyHujR2sVNV3XEEzshJcAhr3uZN3xv0A3CO4AQlu2rlJk4QpgQfgBHihOYUQXiYYlixnOOSH4OTGFcQYoowGYHFtVTv359fXZAuNj60srPeZa1RS-lsbGPmmyxY97bzXtvOZNLprJUrH_rEupRnPmjrZNhnaumd7hun4KiR62jO_vwYLG5vXmf3-fzp7mE2necSc4hzVCFNlEFVQYqiVIoYUiuodV1qQ7nSkjDJihoxxhpV1tjQgnECGS8JwTIVxuBi2LsJ_mNrYidWfhtcOikKQqqCsYrRRF0OlAo-xmAasQm2TQ8LBEUvm-hlE7-yJRgN8M6uzf4fUjxOn1-GmR_WOnF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448266865</pqid></control><display><type>article</type><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</creator><creatorcontrib>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</creatorcontrib><description>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.13543</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atmospheric entry ; Crystals ; Enstatite ; Grain boundaries ; Melting ; Nucleation ; Olivine ; Polycrystals ; Transformations ; Vitrification</subject><ispartof>Meteoritics &amp; planetary science, 2020-08, Vol.55 (8), p.n/a</ispartof><rights>The Meteoritical Society, 2020.</rights><rights>Copyright © 2020 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</citedby><cites>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</cites><orcidid>0000-0002-4404-9813 ; 0000-0001-5725-9513 ; 0000-0001-5140-7853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukimoto, Kanta</creatorcontrib><creatorcontrib>Miyahara, Masaaki</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Ohfuji, Hiroaki</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Kodama, Yu</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Yamaguchi, Akira</creatorcontrib><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><title>Meteoritics &amp; planetary science</title><description>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</description><subject>Atmospheric entry</subject><subject>Crystals</subject><subject>Enstatite</subject><subject>Grain boundaries</subject><subject>Melting</subject><subject>Nucleation</subject><subject>Olivine</subject><subject>Polycrystals</subject><subject>Transformations</subject><subject>Vitrification</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElOwzAUhi0EEqWw4QSR2CGl2PGQeFkqJqkIJOjacmyHujR2sVNV3XEEzshJcAhr3uZN3xv0A3CO4AQlu2rlJk4QpgQfgBHihOYUQXiYYlixnOOSH4OTGFcQYoowGYHFtVTv359fXZAuNj60srPeZa1RS-lsbGPmmyxY97bzXtvOZNLprJUrH_rEupRnPmjrZNhnaumd7hun4KiR62jO_vwYLG5vXmf3-fzp7mE2necSc4hzVCFNlEFVQYqiVIoYUiuodV1qQ7nSkjDJihoxxhpV1tjQgnECGS8JwTIVxuBi2LsJ_mNrYidWfhtcOikKQqqCsYrRRF0OlAo-xmAasQm2TQ8LBEUvm-hlE7-yJRgN8M6uzf4fUjxOn1-GmR_WOnF9</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Fukimoto, Kanta</creator><creator>Miyahara, Masaaki</creator><creator>Sakai, Takeshi</creator><creator>Ohfuji, Hiroaki</creator><creator>Tomioka, Naotaka</creator><creator>Kodama, Yu</creator><creator>Ohtani, Eiji</creator><creator>Yamaguchi, Akira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4404-9813</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-5140-7853</orcidid></search><sort><creationdate>202008</creationdate><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><author>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric entry</topic><topic>Crystals</topic><topic>Enstatite</topic><topic>Grain boundaries</topic><topic>Melting</topic><topic>Nucleation</topic><topic>Olivine</topic><topic>Polycrystals</topic><topic>Transformations</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukimoto, Kanta</creatorcontrib><creatorcontrib>Miyahara, Masaaki</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Ohfuji, Hiroaki</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Kodama, Yu</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Yamaguchi, Akira</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukimoto, Kanta</au><au>Miyahara, Masaaki</au><au>Sakai, Takeshi</au><au>Ohfuji, Hiroaki</au><au>Tomioka, Naotaka</au><au>Kodama, Yu</au><au>Ohtani, Eiji</au><au>Yamaguchi, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2020-08</date><risdate>2020</risdate><volume>55</volume><issue>8</issue><epage>n/a</epage><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.13543</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4404-9813</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-5140-7853</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2020-08, Vol.55 (8), p.n/a
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_2448266865
source Wiley-Blackwell Read & Publish Collection
subjects Atmospheric entry
Crystals
Enstatite
Grain boundaries
Melting
Nucleation
Olivine
Polycrystals
Transformations
Vitrification
title Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%E2%80%90transformation%20mechanisms%20of%20ringwoodite%20and%20majorite%20in%20an%20ordinary%20chondrite&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Fukimoto,%20Kanta&rft.date=2020-08&rft.volume=55&rft.issue=8&rft.epage=n/a&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.13543&rft_dat=%3Cproquest_cross%3E2448266865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448266865&rft_id=info:pmid/&rfr_iscdi=true