Loading…
Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite
We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enst...
Saved in:
Published in: | Meteoritics & planetary science 2020-08, Vol.55 (8), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3 |
container_end_page | n/a |
container_issue | 8 |
container_start_page | |
container_title | Meteoritics & planetary science |
container_volume | 55 |
creator | Fukimoto, Kanta Miyahara, Masaaki Sakai, Takeshi Ohfuji, Hiroaki Tomioka, Naotaka Kodama, Yu Ohtani, Eiji Yamaguchi, Akira |
description | We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite. |
doi_str_mv | 10.1111/maps.13543 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448266865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448266865</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</originalsourceid><addsrcrecordid>eNp9kElOwzAUhi0EEqWw4QSR2CGl2PGQeFkqJqkIJOjacmyHujR2sVNV3XEEzshJcAhr3uZN3xv0A3CO4AQlu2rlJk4QpgQfgBHihOYUQXiYYlixnOOSH4OTGFcQYoowGYHFtVTv359fXZAuNj60srPeZa1RS-lsbGPmmyxY97bzXtvOZNLprJUrH_rEupRnPmjrZNhnaumd7hun4KiR62jO_vwYLG5vXmf3-fzp7mE2necSc4hzVCFNlEFVQYqiVIoYUiuodV1qQ7nSkjDJihoxxhpV1tjQgnECGS8JwTIVxuBi2LsJ_mNrYidWfhtcOikKQqqCsYrRRF0OlAo-xmAasQm2TQ8LBEUvm-hlE7-yJRgN8M6uzf4fUjxOn1-GmR_WOnF9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448266865</pqid></control><display><type>article</type><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</creator><creatorcontrib>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</creatorcontrib><description>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.13543</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atmospheric entry ; Crystals ; Enstatite ; Grain boundaries ; Melting ; Nucleation ; Olivine ; Polycrystals ; Transformations ; Vitrification</subject><ispartof>Meteoritics & planetary science, 2020-08, Vol.55 (8), p.n/a</ispartof><rights>The Meteoritical Society, 2020.</rights><rights>Copyright © 2020 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</citedby><cites>FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</cites><orcidid>0000-0002-4404-9813 ; 0000-0001-5725-9513 ; 0000-0001-5140-7853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukimoto, Kanta</creatorcontrib><creatorcontrib>Miyahara, Masaaki</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Ohfuji, Hiroaki</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Kodama, Yu</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Yamaguchi, Akira</creatorcontrib><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><title>Meteoritics & planetary science</title><description>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</description><subject>Atmospheric entry</subject><subject>Crystals</subject><subject>Enstatite</subject><subject>Grain boundaries</subject><subject>Melting</subject><subject>Nucleation</subject><subject>Olivine</subject><subject>Polycrystals</subject><subject>Transformations</subject><subject>Vitrification</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElOwzAUhi0EEqWw4QSR2CGl2PGQeFkqJqkIJOjacmyHujR2sVNV3XEEzshJcAhr3uZN3xv0A3CO4AQlu2rlJk4QpgQfgBHihOYUQXiYYlixnOOSH4OTGFcQYoowGYHFtVTv359fXZAuNj60srPeZa1RS-lsbGPmmyxY97bzXtvOZNLprJUrH_rEupRnPmjrZNhnaumd7hun4KiR62jO_vwYLG5vXmf3-fzp7mE2necSc4hzVCFNlEFVQYqiVIoYUiuodV1qQ7nSkjDJihoxxhpV1tjQgnECGS8JwTIVxuBi2LsJ_mNrYidWfhtcOikKQqqCsYrRRF0OlAo-xmAasQm2TQ8LBEUvm-hlE7-yJRgN8M6uzf4fUjxOn1-GmR_WOnF9</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Fukimoto, Kanta</creator><creator>Miyahara, Masaaki</creator><creator>Sakai, Takeshi</creator><creator>Ohfuji, Hiroaki</creator><creator>Tomioka, Naotaka</creator><creator>Kodama, Yu</creator><creator>Ohtani, Eiji</creator><creator>Yamaguchi, Akira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4404-9813</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-5140-7853</orcidid></search><sort><creationdate>202008</creationdate><title>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</title><author>Fukimoto, Kanta ; Miyahara, Masaaki ; Sakai, Takeshi ; Ohfuji, Hiroaki ; Tomioka, Naotaka ; Kodama, Yu ; Ohtani, Eiji ; Yamaguchi, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric entry</topic><topic>Crystals</topic><topic>Enstatite</topic><topic>Grain boundaries</topic><topic>Melting</topic><topic>Nucleation</topic><topic>Olivine</topic><topic>Polycrystals</topic><topic>Transformations</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukimoto, Kanta</creatorcontrib><creatorcontrib>Miyahara, Masaaki</creatorcontrib><creatorcontrib>Sakai, Takeshi</creatorcontrib><creatorcontrib>Ohfuji, Hiroaki</creatorcontrib><creatorcontrib>Tomioka, Naotaka</creatorcontrib><creatorcontrib>Kodama, Yu</creatorcontrib><creatorcontrib>Ohtani, Eiji</creatorcontrib><creatorcontrib>Yamaguchi, Akira</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics & planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukimoto, Kanta</au><au>Miyahara, Masaaki</au><au>Sakai, Takeshi</au><au>Ohfuji, Hiroaki</au><au>Tomioka, Naotaka</au><au>Kodama, Yu</au><au>Ohtani, Eiji</au><au>Yamaguchi, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite</atitle><jtitle>Meteoritics & planetary science</jtitle><date>2020-08</date><risdate>2020</risdate><volume>55</volume><issue>8</issue><epage>n/a</epage><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>We investigated the back‐transformation mechanisms of ringwoodite and majorite occurring in a shock‐melt vein (SMV) of the Yamato 75267 H6 ordinary chondrite during atmospheric entry heating. Ringwoodite and majorite in the shock melt near the fusion crust have back‐transformed into olivine and enstatite, respectively. Ringwoodite (Fa~18) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, fine‐grained polycrystalline olivine becomes dominant instead of ringwoodite. The back‐transformation from ringwoodite to olivine proceeds by incoherent nucleation and by an interface‐controlled growth mechanism: nucleation occurs on the grain boundaries of ringwoodite, and subsequently olivine grains grow. Majorite (Fs16–17En82–83Wo1) occurs in the SMV as a fine‐grained polycrystalline assemblage. Approaching the fusion crust, the majorite grains become vitrified. Approaching the fusion crust even more, clino/orthoenstatite grains occur in the vitrified majorite. The back‐transformation from majorite to enstatite is initiated by the vitrification, and growth continues by the subsequent nucleation in the vitrified majorite.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.13543</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4404-9813</orcidid><orcidid>https://orcid.org/0000-0001-5725-9513</orcidid><orcidid>https://orcid.org/0000-0001-5140-7853</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1086-9379 |
ispartof | Meteoritics & planetary science, 2020-08, Vol.55 (8), p.n/a |
issn | 1086-9379 1945-5100 |
language | eng |
recordid | cdi_proquest_journals_2448266865 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Atmospheric entry Crystals Enstatite Grain boundaries Melting Nucleation Olivine Polycrystals Transformations Vitrification |
title | Back‐transformation mechanisms of ringwoodite and majorite in an ordinary chondrite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%E2%80%90transformation%20mechanisms%20of%20ringwoodite%20and%20majorite%20in%20an%20ordinary%20chondrite&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Fukimoto,%20Kanta&rft.date=2020-08&rft.volume=55&rft.issue=8&rft.epage=n/a&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.13543&rft_dat=%3Cproquest_cross%3E2448266865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3903-181d4ce1824227cc4e4bc0ddb7de59cda46a62b1666fc7b3e526940697443a7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448266865&rft_id=info:pmid/&rfr_iscdi=true |