Loading…

Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling

•A multi-scale fusion enhancement method based on the human visual system modelling for underwater sea cucumber images is proposed.•The single image is enough for producing the enhanced image by the Laplacian image representation.•The human visual system related fusion gluing maps make all objects d...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture 2020-08, Vol.175, p.105608, Article 105608
Main Authors: Guo, Pengfei, Zeng, Delu, Tian, Yunbo, Liu, Shuangyin, Liu, Hantao, Li, Daoliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593
cites cdi_FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593
container_end_page
container_issue
container_start_page 105608
container_title Computers and electronics in agriculture
container_volume 175
creator Guo, Pengfei
Zeng, Delu
Tian, Yunbo
Liu, Shuangyin
Liu, Hantao
Li, Daoliang
description •A multi-scale fusion enhancement method based on the human visual system modelling for underwater sea cucumber images is proposed.•The single image is enough for producing the enhanced image by the Laplacian image representation.•The human visual system related fusion gluing maps make all objects detection based tasks more clearly in our framework.•The human visual system modelling based algorithm is accurately accompanied with the underwater robot. The vision computing techniques are widely used in the marine industry. In order to improve the detection and recognition accuracy of artificial intelligence-robotics, we propose a novel underwater image enhancement algorithm, using a multi-scale fusion approach based on the properties of the human visual system. Our method fuses the results of underwater image enhancement algorithms that deal with the color-casting, sharpness and contrast degradation. The method is further weighted by a human visual system-based image structure map that combines Michaelson-like contrast map, saliency map, dark channel map and exposed map. The multi-scale fusion strategy is used to avoid the artifacts of sharpness blending based on Laplacian image representation. The results show that our algorithm can recover more detail information of dark regions and improve the overall visual quality of underwater images.
doi_str_mv 10.1016/j.compag.2020.105608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448455087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169920304580</els_id><sourcerecordid>2448455087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12TtGnSiyCLX7DiRc8hTSe7Kf1Yk2Zl_71Z6tm5DO_wzgzvg9AtJStKaHnfrszY7_V2xQg7jXhJ5BlaUClYJigR52iRbDKjZVVdoqsQWpJ0JcUC7d5jN7ksGN0BhmGnBwM9DBO2MbhxwHb0OA4N-B89gccBNDbRxL5OwvV6CwHXOkCDk3cXez3ggwtRdzgcwwQ97scGus4N22t0YXUX4OavL9HX89Pn-jXbfLy8rR83mcnzYsqYlaBLYTnLZUEbmpelEdQKLisuZArBqW1YbYjVQMA0TJyETsVqKHiVL9HdfHfvx-8IYVLtGP2QXipWFLLgnEiRXMXsMn4MwYNVe5_i-KOiRJ2YqlbNTNWJqZqZprWHeQ1SgoMDr4JxkJA1zoOZVDO6_w_8AqDzgxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448455087</pqid></control><display><type>article</type><title>Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling</title><source>ScienceDirect Freedom Collection</source><creator>Guo, Pengfei ; Zeng, Delu ; Tian, Yunbo ; Liu, Shuangyin ; Liu, Hantao ; Li, Daoliang</creator><creatorcontrib>Guo, Pengfei ; Zeng, Delu ; Tian, Yunbo ; Liu, Shuangyin ; Liu, Hantao ; Li, Daoliang</creatorcontrib><description>•A multi-scale fusion enhancement method based on the human visual system modelling for underwater sea cucumber images is proposed.•The single image is enough for producing the enhanced image by the Laplacian image representation.•The human visual system related fusion gluing maps make all objects detection based tasks more clearly in our framework.•The human visual system modelling based algorithm is accurately accompanied with the underwater robot. The vision computing techniques are widely used in the marine industry. In order to improve the detection and recognition accuracy of artificial intelligence-robotics, we propose a novel underwater image enhancement algorithm, using a multi-scale fusion approach based on the properties of the human visual system. Our method fuses the results of underwater image enhancement algorithms that deal with the color-casting, sharpness and contrast degradation. The method is further weighted by a human visual system-based image structure map that combines Michaelson-like contrast map, saliency map, dark channel map and exposed map. The multi-scale fusion strategy is used to avoid the artifacts of sharpness blending based on Laplacian image representation. The results show that our algorithm can recover more detail information of dark regions and improve the overall visual quality of underwater images.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105608</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Human visual system modelling ; Image contrast ; Image enhancement ; Image fusion ; Image quality ; Object recognition ; Perception ; Robotics ; Sharpness ; Underwater ; Underwater image enhancement</subject><ispartof>Computers and electronics in agriculture, 2020-08, Vol.175, p.105608, Article 105608</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593</citedby><cites>FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Pengfei</creatorcontrib><creatorcontrib>Zeng, Delu</creatorcontrib><creatorcontrib>Tian, Yunbo</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Li, Daoliang</creatorcontrib><title>Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling</title><title>Computers and electronics in agriculture</title><description>•A multi-scale fusion enhancement method based on the human visual system modelling for underwater sea cucumber images is proposed.•The single image is enough for producing the enhanced image by the Laplacian image representation.•The human visual system related fusion gluing maps make all objects detection based tasks more clearly in our framework.•The human visual system modelling based algorithm is accurately accompanied with the underwater robot. The vision computing techniques are widely used in the marine industry. In order to improve the detection and recognition accuracy of artificial intelligence-robotics, we propose a novel underwater image enhancement algorithm, using a multi-scale fusion approach based on the properties of the human visual system. Our method fuses the results of underwater image enhancement algorithms that deal with the color-casting, sharpness and contrast degradation. The method is further weighted by a human visual system-based image structure map that combines Michaelson-like contrast map, saliency map, dark channel map and exposed map. The multi-scale fusion strategy is used to avoid the artifacts of sharpness blending based on Laplacian image representation. The results show that our algorithm can recover more detail information of dark regions and improve the overall visual quality of underwater images.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Human visual system modelling</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image fusion</subject><subject>Image quality</subject><subject>Object recognition</subject><subject>Perception</subject><subject>Robotics</subject><subject>Sharpness</subject><subject>Underwater</subject><subject>Underwater image enhancement</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Bz12TtGnSiyCLX7DiRc8hTSe7Kf1Yk2Zl_71Z6tm5DO_wzgzvg9AtJStKaHnfrszY7_V2xQg7jXhJ5BlaUClYJigR52iRbDKjZVVdoqsQWpJ0JcUC7d5jN7ksGN0BhmGnBwM9DBO2MbhxwHb0OA4N-B89gccBNDbRxL5OwvV6CwHXOkCDk3cXez3ggwtRdzgcwwQ97scGus4N22t0YXUX4OavL9HX89Pn-jXbfLy8rR83mcnzYsqYlaBLYTnLZUEbmpelEdQKLisuZArBqW1YbYjVQMA0TJyETsVqKHiVL9HdfHfvx-8IYVLtGP2QXipWFLLgnEiRXMXsMn4MwYNVe5_i-KOiRJ2YqlbNTNWJqZqZprWHeQ1SgoMDr4JxkJA1zoOZVDO6_w_8AqDzgxE</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Guo, Pengfei</creator><creator>Zeng, Delu</creator><creator>Tian, Yunbo</creator><creator>Liu, Shuangyin</creator><creator>Liu, Hantao</creator><creator>Li, Daoliang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202008</creationdate><title>Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling</title><author>Guo, Pengfei ; Zeng, Delu ; Tian, Yunbo ; Liu, Shuangyin ; Liu, Hantao ; Li, Daoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Human visual system modelling</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image fusion</topic><topic>Image quality</topic><topic>Object recognition</topic><topic>Perception</topic><topic>Robotics</topic><topic>Sharpness</topic><topic>Underwater</topic><topic>Underwater image enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Pengfei</creatorcontrib><creatorcontrib>Zeng, Delu</creatorcontrib><creatorcontrib>Tian, Yunbo</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Liu, Hantao</creatorcontrib><creatorcontrib>Li, Daoliang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Pengfei</au><au>Zeng, Delu</au><au>Tian, Yunbo</au><au>Liu, Shuangyin</au><au>Liu, Hantao</au><au>Li, Daoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2020-08</date><risdate>2020</risdate><volume>175</volume><spage>105608</spage><pages>105608-</pages><artnum>105608</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•A multi-scale fusion enhancement method based on the human visual system modelling for underwater sea cucumber images is proposed.•The single image is enough for producing the enhanced image by the Laplacian image representation.•The human visual system related fusion gluing maps make all objects detection based tasks more clearly in our framework.•The human visual system modelling based algorithm is accurately accompanied with the underwater robot. The vision computing techniques are widely used in the marine industry. In order to improve the detection and recognition accuracy of artificial intelligence-robotics, we propose a novel underwater image enhancement algorithm, using a multi-scale fusion approach based on the properties of the human visual system. Our method fuses the results of underwater image enhancement algorithms that deal with the color-casting, sharpness and contrast degradation. The method is further weighted by a human visual system-based image structure map that combines Michaelson-like contrast map, saliency map, dark channel map and exposed map. The multi-scale fusion strategy is used to avoid the artifacts of sharpness blending based on Laplacian image representation. The results show that our algorithm can recover more detail information of dark regions and improve the overall visual quality of underwater images.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105608</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2020-08, Vol.175, p.105608, Article 105608
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2448455087
source ScienceDirect Freedom Collection
subjects Algorithms
Artificial intelligence
Human visual system modelling
Image contrast
Image enhancement
Image fusion
Image quality
Object recognition
Perception
Robotics
Sharpness
Underwater
Underwater image enhancement
title Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20enhancement%20fusion%20for%20underwater%20sea%20cucumber%20images%20based%20on%20human%20visual%20system%20modelling&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Guo,%20Pengfei&rft.date=2020-08&rft.volume=175&rft.spage=105608&rft.pages=105608-&rft.artnum=105608&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105608&rft_dat=%3Cproquest_cross%3E2448455087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-2f8ea67f523841d1366c71f758957816851fd2bc0fae0ecd272bc0aaaa2be4593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448455087&rft_id=info:pmid/&rfr_iscdi=true