Loading…
An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications
Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a)...
Saved in:
Published in: | Analytical chemistry (Washington) 2020-08, Vol.92 (16), p.11044-11052 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73 |
---|---|
cites | cdi_FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73 |
container_end_page | 11052 |
container_issue | 16 |
container_start_page | 11044 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Zhao, Mei-Ling Zeng, Wei-Jia Chai, Ya-Qin Yuan, Ruo Zhuo, Ying |
description | Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a). Specifically, the DNA hydrogel with numerous dendritic DNA structures was in situ generated via a target-induced nonlinear hybrid chain reaction in the presence of miRNA let-7a, which possessed a large loading capacity to entrap massive DNA intercalators. Then, the PTC-DEDA with positive charges could easily intercalate into the DNA grooves due to the inherent amphipathic structure, achieving a strong ECL signal. Using the proposed PTC-DEDA as both DNA intercalators and ECL emitters, the DNA hydrogel biosensing platform exhibited a high stability and an excellent sensitivity for miRNA let-7a, with a desirable linear range (10 fM to 10 nM) and a low detection limit (1.49 fM). Significantly, the work provides a potential alternative to develop simple and high-efficiency ECL platforms for biochemical analysis applications. |
doi_str_mv | 10.1021/acs.analchem.0c00152 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448680607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448680607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EouXxBwhFYp0ydhzbLEMJD6mCDawjv0JdUqfYqVD_HpcWlmxmpNG5d6SD0AWGCQaCr6WOE-llp-d2OQENgEtygMZpQs6EIIdoDABFTjjACJ3EuEgIBsyO0aggjHNK2Bh9VD6r2tZ5N2zy2s-l19Zkd89V9uQHG7Ts5NCH7MsN85-Ljzarp7OsXiprTEKd_6EfNyb077bL2kTfuj4m0vn3rFqtOqfl4Hofz9BRK7toz_f7FL3d16_Tx3z28vA0rWa5LDgbcq0Ka6nQvMWqJCXXtJCM4pvSgFCt4liUN1gTWgrDFWFamRa4toIqIwWTvDhFV7veVeg_1zYOzaJfh6QqNoRSwQQw2FJ0R-nQxxhs26yCW8qwaTA0W8NNMtz8Gm72hlPscl--Vktr_kK_ShMAO2Ab_3v8b-c33SmKDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448680607</pqid></control><display><type>article</type><title>An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Mei-Ling ; Zeng, Wei-Jia ; Chai, Ya-Qin ; Yuan, Ruo ; Zhuo, Ying</creator><creatorcontrib>Zhao, Mei-Ling ; Zeng, Wei-Jia ; Chai, Ya-Qin ; Yuan, Ruo ; Zhuo, Ying</creatorcontrib><description>Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a). Specifically, the DNA hydrogel with numerous dendritic DNA structures was in situ generated via a target-induced nonlinear hybrid chain reaction in the presence of miRNA let-7a, which possessed a large loading capacity to entrap massive DNA intercalators. Then, the PTC-DEDA with positive charges could easily intercalate into the DNA grooves due to the inherent amphipathic structure, achieving a strong ECL signal. Using the proposed PTC-DEDA as both DNA intercalators and ECL emitters, the DNA hydrogel biosensing platform exhibited a high stability and an excellent sensitivity for miRNA let-7a, with a desirable linear range (10 fM to 10 nM) and a low detection limit (1.49 fM). Significantly, the work provides a potential alternative to develop simple and high-efficiency ECL platforms for biochemical analysis applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c00152</identifier><identifier>PMID: 32677426</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity ; Biochemical analysis ; Biosensing Techniques - methods ; Biosensors ; Cell Line, Tumor ; Chemistry ; Dendritic structure ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Electrochemiluminescence ; Emitters ; Gold - chemistry ; Grooves ; Humans ; Hydrogels ; Hydrogels - chemistry ; Intercalating Agents - chemistry ; Limit of Detection ; Luminescent Agents - chemistry ; Magnetite Nanoparticles - chemistry ; MicroRNAs ; MicroRNAs - analysis ; miRNA ; Palladium - chemistry ; Perylene - analogs & derivatives ; Ribonucleic acid ; RNA ; Sulfates - chemistry</subject><ispartof>Analytical chemistry (Washington), 2020-08, Vol.92 (16), p.11044-11052</ispartof><rights>Copyright American Chemical Society Aug 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73</citedby><cites>FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73</cites><orcidid>0000-0003-3664-6236 ; 0000-0003-4392-9592 ; 0000-0002-4491-1186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32677426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Mei-Ling</creatorcontrib><creatorcontrib>Zeng, Wei-Jia</creatorcontrib><creatorcontrib>Chai, Ya-Qin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Zhuo, Ying</creatorcontrib><title>An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a). Specifically, the DNA hydrogel with numerous dendritic DNA structures was in situ generated via a target-induced nonlinear hybrid chain reaction in the presence of miRNA let-7a, which possessed a large loading capacity to entrap massive DNA intercalators. Then, the PTC-DEDA with positive charges could easily intercalate into the DNA grooves due to the inherent amphipathic structure, achieving a strong ECL signal. Using the proposed PTC-DEDA as both DNA intercalators and ECL emitters, the DNA hydrogel biosensing platform exhibited a high stability and an excellent sensitivity for miRNA let-7a, with a desirable linear range (10 fM to 10 nM) and a low detection limit (1.49 fM). Significantly, the work provides a potential alternative to develop simple and high-efficiency ECL platforms for biochemical analysis applications.</description><subject>Affinity</subject><subject>Biochemical analysis</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Dendritic structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electrochemiluminescence</subject><subject>Emitters</subject><subject>Gold - chemistry</subject><subject>Grooves</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Intercalating Agents - chemistry</subject><subject>Limit of Detection</subject><subject>Luminescent Agents - chemistry</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>MicroRNAs</subject><subject>MicroRNAs - analysis</subject><subject>miRNA</subject><subject>Palladium - chemistry</subject><subject>Perylene - analogs & derivatives</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sulfates - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EouXxBwhFYp0ydhzbLEMJD6mCDawjv0JdUqfYqVD_HpcWlmxmpNG5d6SD0AWGCQaCr6WOE-llp-d2OQENgEtygMZpQs6EIIdoDABFTjjACJ3EuEgIBsyO0aggjHNK2Bh9VD6r2tZ5N2zy2s-l19Zkd89V9uQHG7Ts5NCH7MsN85-Ljzarp7OsXiprTEKd_6EfNyb077bL2kTfuj4m0vn3rFqtOqfl4Hofz9BRK7toz_f7FL3d16_Tx3z28vA0rWa5LDgbcq0Ka6nQvMWqJCXXtJCM4pvSgFCt4liUN1gTWgrDFWFamRa4toIqIwWTvDhFV7veVeg_1zYOzaJfh6QqNoRSwQQw2FJ0R-nQxxhs26yCW8qwaTA0W8NNMtz8Gm72hlPscl--Vktr_kK_ShMAO2Ab_3v8b-c33SmKDg</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Zhao, Mei-Ling</creator><creator>Zeng, Wei-Jia</creator><creator>Chai, Ya-Qin</creator><creator>Yuan, Ruo</creator><creator>Zhuo, Ying</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3664-6236</orcidid><orcidid>https://orcid.org/0000-0003-4392-9592</orcidid><orcidid>https://orcid.org/0000-0002-4491-1186</orcidid></search><sort><creationdate>20200818</creationdate><title>An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications</title><author>Zhao, Mei-Ling ; Zeng, Wei-Jia ; Chai, Ya-Qin ; Yuan, Ruo ; Zhuo, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affinity</topic><topic>Biochemical analysis</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Dendritic structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electrochemiluminescence</topic><topic>Emitters</topic><topic>Gold - chemistry</topic><topic>Grooves</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Intercalating Agents - chemistry</topic><topic>Limit of Detection</topic><topic>Luminescent Agents - chemistry</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>MicroRNAs</topic><topic>MicroRNAs - analysis</topic><topic>miRNA</topic><topic>Palladium - chemistry</topic><topic>Perylene - analogs & derivatives</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sulfates - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mei-Ling</creatorcontrib><creatorcontrib>Zeng, Wei-Jia</creatorcontrib><creatorcontrib>Chai, Ya-Qin</creatorcontrib><creatorcontrib>Yuan, Ruo</creatorcontrib><creatorcontrib>Zhuo, Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Mei-Ling</au><au>Zeng, Wei-Jia</au><au>Chai, Ya-Qin</au><au>Yuan, Ruo</au><au>Zhuo, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>92</volume><issue>16</issue><spage>11044</spage><epage>11052</epage><pages>11044-11052</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Herein, an amphiphilic perylene derivative (denoted as PTC-DEDA) was explored as DNA intercalators endowed with an enhanced affinity and intense electrochemiluminescence (ECL) to construct a target-induced DNA hydrogel biosensing platform for the sensitive detection of microRNA let-7a (miRNA let-7a). Specifically, the DNA hydrogel with numerous dendritic DNA structures was in situ generated via a target-induced nonlinear hybrid chain reaction in the presence of miRNA let-7a, which possessed a large loading capacity to entrap massive DNA intercalators. Then, the PTC-DEDA with positive charges could easily intercalate into the DNA grooves due to the inherent amphipathic structure, achieving a strong ECL signal. Using the proposed PTC-DEDA as both DNA intercalators and ECL emitters, the DNA hydrogel biosensing platform exhibited a high stability and an excellent sensitivity for miRNA let-7a, with a desirable linear range (10 fM to 10 nM) and a low detection limit (1.49 fM). Significantly, the work provides a potential alternative to develop simple and high-efficiency ECL platforms for biochemical analysis applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32677426</pmid><doi>10.1021/acs.analchem.0c00152</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3664-6236</orcidid><orcidid>https://orcid.org/0000-0003-4392-9592</orcidid><orcidid>https://orcid.org/0000-0002-4491-1186</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-08, Vol.92 (16), p.11044-11052 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2448680607 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Affinity Biochemical analysis Biosensing Techniques - methods Biosensors Cell Line, Tumor Chemistry Dendritic structure Deoxyribonucleic acid DNA DNA - chemistry Electrochemiluminescence Emitters Gold - chemistry Grooves Humans Hydrogels Hydrogels - chemistry Intercalating Agents - chemistry Limit of Detection Luminescent Agents - chemistry Magnetite Nanoparticles - chemistry MicroRNAs MicroRNAs - analysis miRNA Palladium - chemistry Perylene - analogs & derivatives Ribonucleic acid RNA Sulfates - chemistry |
title | An Affinity-Enhanced DNA Intercalator with Intense ECL Embedded in DNA Hydrogel for Biosensing Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Affinity-Enhanced%20DNA%20Intercalator%20with%20Intense%20ECL%20Embedded%20in%20DNA%20Hydrogel%20for%20Biosensing%20Applications&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhao,%20Mei-Ling&rft.date=2020-08-18&rft.volume=92&rft.issue=16&rft.spage=11044&rft.epage=11052&rft.pages=11044-11052&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c00152&rft_dat=%3Cproquest_cross%3E2448680607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-cb3ee48c7f1b5257c43a64195d08bfb718591c2458d7b26cbdf07ce84bda86a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448680607&rft_id=info:pmid/32677426&rfr_iscdi=true |