Loading…

Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K

This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2020-09, Vol.538, p.152176, Article 152176
Main Authors: Pavlov, T.R., Lestak, M., Wenman, M.R., Vlahovic, L., Robba, D., Cambriani, A., Staicu, D., Dahms, E., Ernstberger, M., Brown, M., Bradford, M.R., Konings, R.J.M., Grimes, R.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653
cites cdi_FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653
container_end_page
container_issue
container_start_page 152176
container_title Journal of nuclear materials
container_volume 538
creator Pavlov, T.R.
Lestak, M.
Wenman, M.R.
Vlahovic, L.
Robba, D.
Cambriani, A.
Staicu, D.
Dahms, E.
Ernstberger, M.
Brown, M.
Bradford, M.R.
Konings, R.J.M.
Grimes, R.W.
description This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites.
doi_str_mv 10.1016/j.jnucmat.2020.152176
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448685903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519315375</els_id><sourcerecordid>2448685903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653</originalsourceid><addsrcrecordid>eNqFUE1PwzAMjRBIjMFPQIrEucNJmzY9ITSNDzGJC1yJ0sTdUq3tSFM-_j2ZujsH25L9_J79CLlmsGDA8ttm0XSjaXVYcOCxJzgr8hMyY7JIk0xyOCUzAM6TlDFxTi6GoQEAUYKYkY_Vj25d57oNDVs8hG_1ju59v0cfHA60r-nYOe-1dTqgpVFqh9rTTezgIe-3LiCtMHwjdrQQQHVnKRcA9OWSnNV6N-DVsc7J-8PqbfmUrF8fn5f368SkMguJrSyrudFoC7RVUZYo01oCGANVwXVu80xUpTGFFamw0tba2rqURsQ5yFykc3Iz8cbDP0ccgmr60XdRUvEsk7mM36YRJSaU8f0weKzV3rtW-1_FQB2sVI06WqkOVqrJyrh3N-1hfOHLoVeDcdgZtM6jCcr27h-GP2-Tf-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448685903</pqid></control><display><type>article</type><title>Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K</title><source>Elsevier</source><creator>Pavlov, T.R. ; Lestak, M. ; Wenman, M.R. ; Vlahovic, L. ; Robba, D. ; Cambriani, A. ; Staicu, D. ; Dahms, E. ; Ernstberger, M. ; Brown, M. ; Bradford, M.R. ; Konings, R.J.M. ; Grimes, R.W.</creator><creatorcontrib>Pavlov, T.R. ; Lestak, M. ; Wenman, M.R. ; Vlahovic, L. ; Robba, D. ; Cambriani, A. ; Staicu, D. ; Dahms, E. ; Ernstberger, M. ; Brown, M. ; Bradford, M.R. ; Konings, R.J.M. ; Grimes, R.W.</creatorcontrib><description>This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152176</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computed tomography ; Conductivity ; Emissivity ; Fillers ; Gas cooled reactors ; Graphite ; Graphitization ; Heat conductivity ; Heat transfer ; High temperature ; Manufacturing industry ; Microstructure ; Morphology ; Nuclear fuels ; Platelets (materials) ; Scanning electron microscopy ; Specific heat ; Spectral emissivity ; Thermal conductivity ; Thermal diffusivity ; Thermal properties ; Thermodynamic properties</subject><ispartof>Journal of nuclear materials, 2020-09, Vol.538, p.152176, Article 152176</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653</citedby><cites>FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pavlov, T.R.</creatorcontrib><creatorcontrib>Lestak, M.</creatorcontrib><creatorcontrib>Wenman, M.R.</creatorcontrib><creatorcontrib>Vlahovic, L.</creatorcontrib><creatorcontrib>Robba, D.</creatorcontrib><creatorcontrib>Cambriani, A.</creatorcontrib><creatorcontrib>Staicu, D.</creatorcontrib><creatorcontrib>Dahms, E.</creatorcontrib><creatorcontrib>Ernstberger, M.</creatorcontrib><creatorcontrib>Brown, M.</creatorcontrib><creatorcontrib>Bradford, M.R.</creatorcontrib><creatorcontrib>Konings, R.J.M.</creatorcontrib><creatorcontrib>Grimes, R.W.</creatorcontrib><title>Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K</title><title>Journal of nuclear materials</title><description>This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites.</description><subject>Computed tomography</subject><subject>Conductivity</subject><subject>Emissivity</subject><subject>Fillers</subject><subject>Gas cooled reactors</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Manufacturing industry</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nuclear fuels</subject><subject>Platelets (materials)</subject><subject>Scanning electron microscopy</subject><subject>Specific heat</subject><subject>Spectral emissivity</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PwzAMjRBIjMFPQIrEucNJmzY9ITSNDzGJC1yJ0sTdUq3tSFM-_j2ZujsH25L9_J79CLlmsGDA8ttm0XSjaXVYcOCxJzgr8hMyY7JIk0xyOCUzAM6TlDFxTi6GoQEAUYKYkY_Vj25d57oNDVs8hG_1ju59v0cfHA60r-nYOe-1dTqgpVFqh9rTTezgIe-3LiCtMHwjdrQQQHVnKRcA9OWSnNV6N-DVsc7J-8PqbfmUrF8fn5f368SkMguJrSyrudFoC7RVUZYo01oCGANVwXVu80xUpTGFFamw0tba2rqURsQ5yFykc3Iz8cbDP0ccgmr60XdRUvEsk7mM36YRJSaU8f0weKzV3rtW-1_FQB2sVI06WqkOVqrJyrh3N-1hfOHLoVeDcdgZtM6jCcr27h-GP2-Tf-o</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Pavlov, T.R.</creator><creator>Lestak, M.</creator><creator>Wenman, M.R.</creator><creator>Vlahovic, L.</creator><creator>Robba, D.</creator><creator>Cambriani, A.</creator><creator>Staicu, D.</creator><creator>Dahms, E.</creator><creator>Ernstberger, M.</creator><creator>Brown, M.</creator><creator>Bradford, M.R.</creator><creator>Konings, R.J.M.</creator><creator>Grimes, R.W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>202009</creationdate><title>Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K</title><author>Pavlov, T.R. ; Lestak, M. ; Wenman, M.R. ; Vlahovic, L. ; Robba, D. ; Cambriani, A. ; Staicu, D. ; Dahms, E. ; Ernstberger, M. ; Brown, M. ; Bradford, M.R. ; Konings, R.J.M. ; Grimes, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computed tomography</topic><topic>Conductivity</topic><topic>Emissivity</topic><topic>Fillers</topic><topic>Gas cooled reactors</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Manufacturing industry</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nuclear fuels</topic><topic>Platelets (materials)</topic><topic>Scanning electron microscopy</topic><topic>Specific heat</topic><topic>Spectral emissivity</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlov, T.R.</creatorcontrib><creatorcontrib>Lestak, M.</creatorcontrib><creatorcontrib>Wenman, M.R.</creatorcontrib><creatorcontrib>Vlahovic, L.</creatorcontrib><creatorcontrib>Robba, D.</creatorcontrib><creatorcontrib>Cambriani, A.</creatorcontrib><creatorcontrib>Staicu, D.</creatorcontrib><creatorcontrib>Dahms, E.</creatorcontrib><creatorcontrib>Ernstberger, M.</creatorcontrib><creatorcontrib>Brown, M.</creatorcontrib><creatorcontrib>Bradford, M.R.</creatorcontrib><creatorcontrib>Konings, R.J.M.</creatorcontrib><creatorcontrib>Grimes, R.W.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlov, T.R.</au><au>Lestak, M.</au><au>Wenman, M.R.</au><au>Vlahovic, L.</au><au>Robba, D.</au><au>Cambriani, A.</au><au>Staicu, D.</au><au>Dahms, E.</au><au>Ernstberger, M.</au><au>Brown, M.</au><au>Bradford, M.R.</au><au>Konings, R.J.M.</au><au>Grimes, R.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-09</date><risdate>2020</risdate><volume>538</volume><spage>152176</spage><pages>152176-</pages><artnum>152176</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152176</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-09, Vol.538, p.152176, Article 152176
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2448685903
source Elsevier
subjects Computed tomography
Conductivity
Emissivity
Fillers
Gas cooled reactors
Graphite
Graphitization
Heat conductivity
Heat transfer
High temperature
Manufacturing industry
Microstructure
Morphology
Nuclear fuels
Platelets (materials)
Scanning electron microscopy
Specific heat
Spectral emissivity
Thermal conductivity
Thermal diffusivity
Thermal properties
Thermodynamic properties
title Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20thermal%20properties%20of%20unirradiated%20nuclear%20grade%20graphite%20between%20750%20and%202500%20K&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Pavlov,%20T.R.&rft.date=2020-09&rft.volume=538&rft.spage=152176&rft.pages=152176-&rft.artnum=152176&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152176&rft_dat=%3Cproquest_cross%3E2448685903%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-dbd1f2caed7edb799e83f800cc0b72a6d645b9cc7d535d8dfaddf98c5c0b08653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448685903&rft_id=info:pmid/&rfr_iscdi=true