Loading…
Inelastic scattering of a photon by a quantum phase-slip
Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of the frequency range. We report that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single incident microwave photon into a large number of lower-energy photo...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of the frequency range. We report that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single incident microwave photon into a large number of lower-energy photons with a near unit probability. The underlying inelastic photon-photon interaction has no analogs in non-linear optics. Instead, the measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid. Our result connects circuit quantum electrodynamics to critical phenomena in two-dimensional boundary quantum field theories, important in the physics of strongly-correlated systems. The photon lifetime data represents a rare example of verified and useful quantum many-body simulation. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2010.02099 |