Loading…

Finite-amplitude instabilities of thin internal wave beams: experiments and theory

A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2020-12, Vol.904, Article A16
Main Authors: Fan, Boyu, Akylas, T. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3
cites cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 904
creator Fan, Boyu
Akylas, T. R.
description A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.
doi_str_mv 10.1017/jfm.2020.682
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448801210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_682</cupid><sourcerecordid>2448801210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7sm2exu4k2KVaEgiJ5DspnVlO6HSar235ulBS-ehhmeeZl5ELqkJKeE1jfrtssZYSSvBDtCM8ormdUVL4_RjBDGMkoZOUVnIawJoQWR9Qy9LF3vImS6Gzcubi1g14eojUudg4CHFscP16dpBN_rDf7WX4AN6C7cYvgZwbsO-hiw7m0iYfC7c3TS6k2Ai0Odo7fl_eviMVs9Pzwt7lZZUxAWM6CSg7a24tIYZktjOCvLguvSsIKBEK21TSuaUhhKwTIt02u1oUUtGy4rU8zR1T539MPnFkJU62E73RgU41wIQhklibreU40fQvDQqjGdrP1OUaImaypZU5M1lawlPD_gujPe2Xf4S_134RcAZW_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448801210</pqid></control><display><type>article</type><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><source>Cambridge Journals Online</source><creator>Fan, Boyu ; Akylas, T. R.</creator><creatorcontrib>Fan, Boyu ; Akylas, T. R.</creatorcontrib><description>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.682</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitude ; Amplitudes ; Beams (radiation) ; Broadband ; Cylinders ; Experiments ; Flow stability ; Fluid mechanics ; Gravity waves ; Instability ; Internal waves ; JFM Papers ; Laboratories ; Sine waves ; Stability analysis ; Streaming ; Theories ; Wave packets ; Wave propagation ; Wavelength ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.904, Article A16</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</citedby><cites>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</cites><orcidid>0000-0002-5246-4574 ; 0000-0002-1743-5225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020006825/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Akylas, T. R.</creatorcontrib><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Beams (radiation)</subject><subject>Broadband</subject><subject>Cylinders</subject><subject>Experiments</subject><subject>Flow stability</subject><subject>Fluid mechanics</subject><subject>Gravity waves</subject><subject>Instability</subject><subject>Internal waves</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Sine waves</subject><subject>Stability analysis</subject><subject>Streaming</subject><subject>Theories</subject><subject>Wave packets</subject><subject>Wave propagation</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7sm2exu4k2KVaEgiJ5DspnVlO6HSar235ulBS-ehhmeeZl5ELqkJKeE1jfrtssZYSSvBDtCM8ormdUVL4_RjBDGMkoZOUVnIawJoQWR9Qy9LF3vImS6Gzcubi1g14eojUudg4CHFscP16dpBN_rDf7WX4AN6C7cYvgZwbsO-hiw7m0iYfC7c3TS6k2Ai0Odo7fl_eviMVs9Pzwt7lZZUxAWM6CSg7a24tIYZktjOCvLguvSsIKBEK21TSuaUhhKwTIt02u1oUUtGy4rU8zR1T539MPnFkJU62E73RgU41wIQhklibreU40fQvDQqjGdrP1OUaImaypZU5M1lawlPD_gujPe2Xf4S_134RcAZW_Q</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Fan, Boyu</creator><creator>Akylas, T. R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5246-4574</orcidid><orcidid>https://orcid.org/0000-0002-1743-5225</orcidid></search><sort><creationdate>20201210</creationdate><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><author>Fan, Boyu ; Akylas, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Beams (radiation)</topic><topic>Broadband</topic><topic>Cylinders</topic><topic>Experiments</topic><topic>Flow stability</topic><topic>Fluid mechanics</topic><topic>Gravity waves</topic><topic>Instability</topic><topic>Internal waves</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Sine waves</topic><topic>Stability analysis</topic><topic>Streaming</topic><topic>Theories</topic><topic>Wave packets</topic><topic>Wave propagation</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Akylas, T. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Boyu</au><au>Akylas, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>904</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.682</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5246-4574</orcidid><orcidid>https://orcid.org/0000-0002-1743-5225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-12, Vol.904, Article A16
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2448801210
source Cambridge Journals Online
subjects Amplitude
Amplitudes
Beams (radiation)
Broadband
Cylinders
Experiments
Flow stability
Fluid mechanics
Gravity waves
Instability
Internal waves
JFM Papers
Laboratories
Sine waves
Stability analysis
Streaming
Theories
Wave packets
Wave propagation
Wavelength
Wavelengths
title Finite-amplitude instabilities of thin internal wave beams: experiments and theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-amplitude%20instabilities%20of%20thin%20internal%20wave%20beams:%20experiments%20and%20theory&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fan,%20Boyu&rft.date=2020-12-10&rft.volume=904&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.682&rft_dat=%3Cproquest_cross%3E2448801210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448801210&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_682&rfr_iscdi=true