Loading…
Finite-amplitude instabilities of thin internal wave beams: experiments and theory
A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finit...
Saved in:
Published in: | Journal of fluid mechanics 2020-12, Vol.904, Article A16 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 904 |
creator | Fan, Boyu Akylas, T. R. |
description | A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability. |
doi_str_mv | 10.1017/jfm.2020.682 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448801210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_682</cupid><sourcerecordid>2448801210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7sm2exu4k2KVaEgiJ5DspnVlO6HSar235ulBS-ehhmeeZl5ELqkJKeE1jfrtssZYSSvBDtCM8ormdUVL4_RjBDGMkoZOUVnIawJoQWR9Qy9LF3vImS6Gzcubi1g14eojUudg4CHFscP16dpBN_rDf7WX4AN6C7cYvgZwbsO-hiw7m0iYfC7c3TS6k2Ai0Odo7fl_eviMVs9Pzwt7lZZUxAWM6CSg7a24tIYZktjOCvLguvSsIKBEK21TSuaUhhKwTIt02u1oUUtGy4rU8zR1T539MPnFkJU62E73RgU41wIQhklibreU40fQvDQqjGdrP1OUaImaypZU5M1lawlPD_gujPe2Xf4S_134RcAZW_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448801210</pqid></control><display><type>article</type><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><source>Cambridge Journals Online</source><creator>Fan, Boyu ; Akylas, T. R.</creator><creatorcontrib>Fan, Boyu ; Akylas, T. R.</creatorcontrib><description>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.682</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitude ; Amplitudes ; Beams (radiation) ; Broadband ; Cylinders ; Experiments ; Flow stability ; Fluid mechanics ; Gravity waves ; Instability ; Internal waves ; JFM Papers ; Laboratories ; Sine waves ; Stability analysis ; Streaming ; Theories ; Wave packets ; Wave propagation ; Wavelength ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2020-12, Vol.904, Article A16</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</citedby><cites>FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</cites><orcidid>0000-0002-5246-4574 ; 0000-0002-1743-5225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020006825/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Akylas, T. R.</creatorcontrib><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Beams (radiation)</subject><subject>Broadband</subject><subject>Cylinders</subject><subject>Experiments</subject><subject>Flow stability</subject><subject>Fluid mechanics</subject><subject>Gravity waves</subject><subject>Instability</subject><subject>Internal waves</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Sine waves</subject><subject>Stability analysis</subject><subject>Streaming</subject><subject>Theories</subject><subject>Wave packets</subject><subject>Wave propagation</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7sm2exu4k2KVaEgiJ5DspnVlO6HSar235ulBS-ehhmeeZl5ELqkJKeE1jfrtssZYSSvBDtCM8ormdUVL4_RjBDGMkoZOUVnIawJoQWR9Qy9LF3vImS6Gzcubi1g14eojUudg4CHFscP16dpBN_rDf7WX4AN6C7cYvgZwbsO-hiw7m0iYfC7c3TS6k2Ai0Odo7fl_eviMVs9Pzwt7lZZUxAWM6CSg7a24tIYZktjOCvLguvSsIKBEK21TSuaUhhKwTIt02u1oUUtGy4rU8zR1T539MPnFkJU62E73RgU41wIQhklibreU40fQvDQqjGdrP1OUaImaypZU5M1lawlPD_gujPe2Xf4S_134RcAZW_Q</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Fan, Boyu</creator><creator>Akylas, T. R.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5246-4574</orcidid><orcidid>https://orcid.org/0000-0002-1743-5225</orcidid></search><sort><creationdate>20201210</creationdate><title>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</title><author>Fan, Boyu ; Akylas, T. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Beams (radiation)</topic><topic>Broadband</topic><topic>Cylinders</topic><topic>Experiments</topic><topic>Flow stability</topic><topic>Fluid mechanics</topic><topic>Gravity waves</topic><topic>Instability</topic><topic>Internal waves</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Sine waves</topic><topic>Stability analysis</topic><topic>Streaming</topic><topic>Theories</topic><topic>Wave packets</topic><topic>Wave propagation</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Boyu</creatorcontrib><creatorcontrib>Akylas, T. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Boyu</au><au>Akylas, T. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-amplitude instabilities of thin internal wave beams: experiments and theory</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>904</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A joint experimental and theoretical study is made of instability mechanisms of locally confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal cylinder that is oscillated harmonically in the direction of beam propagation makes it possible to generate coherent finite-amplitude internal wave beams whose spatial profile comprises no more than a single wavelength. For forcing amplitude above a certain threshold depending on the driving frequency, such thin wave beams are observed to undergo an instability that involves two subharmonic perturbations with wavepacket-like spatial structure. Although it bears resemblance to the triadic resonant instability (TRI) of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI theory as the primary wave is not nearly monochromatic, but instead contains broadband wavenumber spectrum. In contrast, the experimental observations are in good agreement with the predictions of a formal linear stability analysis based on Floquet theory. Finally, experimental evidence is presented that transverse beam variations induce a horizontal mean flow of the streaming type and greatly subdue the instability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.682</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5246-4574</orcidid><orcidid>https://orcid.org/0000-0002-1743-5225</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-12, Vol.904, Article A16 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2448801210 |
source | Cambridge Journals Online |
subjects | Amplitude Amplitudes Beams (radiation) Broadband Cylinders Experiments Flow stability Fluid mechanics Gravity waves Instability Internal waves JFM Papers Laboratories Sine waves Stability analysis Streaming Theories Wave packets Wave propagation Wavelength Wavelengths |
title | Finite-amplitude instabilities of thin internal wave beams: experiments and theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-amplitude%20instabilities%20of%20thin%20internal%20wave%20beams:%20experiments%20and%20theory&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fan,%20Boyu&rft.date=2020-12-10&rft.volume=904&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.682&rft_dat=%3Cproquest_cross%3E2448801210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-e194eadd649bb2d5bb425534a5b232e88fddcf8c58b11ed2a92027b1379c496b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448801210&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_682&rfr_iscdi=true |