Loading…

Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system

When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO x raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engine research 2020-12, Vol.21 (10), p.1846-1856
Main Authors: Gordon, David, Wouters, Christian, Kinoshita, Shota, Wick, Maximilian, Lehrheuer, Bastian, Andert, Jakob, Pischinger, Stefan, Koch, Charles R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When compared to traditional engines, homogeneous charge compression ignition has the potential to significantly reduce NO x raw emissions, while maintaining a high fuel efficiency. Homogeneous charge compression ignition is characterized by compression-induced autoignition of a lean homogeneous air–fuel mixture. Since homogeneous charge compression ignition does not utilize direct ignition control, it is strongly dependent on the state of the cylinder charge and can suffer from high cyclic variability. With spark-assisted compression ignition, it has been demonstrated that misfires can be reduced, while preserving the high thermal efficiency of homogeneous charge compression ignition as a result of the more favorable physical mixture properties due to dilution. However, spark-assisted compression ignition reduces the NO x benefits of homogeneous charge compression ignition, as it increases the local combustion temperatures. To merge the advantages of the homogeneous charge compression ignition and the spark-assisted compression ignition combustion processes, a field-programmable gate array for detailed simulation of the physical gas exchange is combined with a rapid spark system. The low latency and computational speed of the field-programmable gate array allows the simulation process to be implemented in real time. When combined with the rapid reaction time of the high-frequency current-based rapid ignition system, a feedforward controller based on the cylinder pressure or heat release is realized. The developed model-based controller determines if a spark is required to assist the homogeneous charge compression ignition combustion process. The use of the field-programmable gate array and rapid ignition system allows for the calculation of combustion properties and controller output within 0.1 °CA. This article presents the development and experimental validation of the developed controller on a single-cylinder research engine. The combustion stability has been significantly improved as reflected in an improved standard deviation of the indicated mean effective pressure and a reduction of the combustion phasing variations. Furthermore, compared to a traditional homogeneous charge compression ignition system, the hydrocarbon emissions can be reduced, while maintaining low NO x emissions.
ISSN:1468-0874
2041-3149
DOI:10.1177/1468087420917769