Loading…

Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics

In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of...

Full description

Saved in:
Bibliographic Details
Published in:Economics letters 2020-06, Vol.191, p.108831, Article 108831
Main Authors: Cretarola, Alessandra, Figà-Talamanca, Gianna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583
cites cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583
container_end_page
container_issue
container_start_page 108831
container_title Economics letters
container_volume 191
creator Cretarola, Alessandra
Figà-Talamanca, Gianna
description In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts. •Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.
doi_str_mv 10.1016/j.econlet.2019.108831
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448946843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176519304203</els_id><sourcerecordid>2448946843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIeB5a7KbbLInsaV-QMGLnmM2mdUsu5uapEL_van1LgzzYOa9-XgIXVOyoITWt_0CjJ8GSIuS0CbXpKzoCZpRKapCVIKdolnm8YKKmp-jixh7QmjZCD5D78td2w6AA3y4EbCzMCXXOaOT8xN2E9Y5UjpU_VS0OoLFo7cw4M4HvHTJ-F-Sxev0CQF2I94GZwDb_aRHZ-IlOuv0EOHqD-fo7WH9unoqNi-Pz6v7TWEYKVPBrCDW5iTb2paybq2wmmSoNdPc2tpKzY1kJQWeO01DiOxMqQWXRgCX1RzdHOdug__aQUyq97sw5ZWqZEw2rJasyix-ZJngYwzQqXztqMNeUaIOZqpe_ZmpDmaqo5lZd3fUQX7h20FQ0TiYDFgXwCRlvftnwg9KEIEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448946843</pqid></control><display><type>article</type><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Cretarola, Alessandra ; Figà-Talamanca, Gianna</creator><creatorcontrib>Cretarola, Alessandra ; Figà-Talamanca, Gianna</creatorcontrib><description>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts. •Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2019.108831</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Attention ; Bitcoin ; Bubble ; Digital currencies ; Economic models ; Ethereum ; Markov analysis ; Prices ; Regime-switching model ; Stochastic models</subject><ispartof>Economics letters, 2020-06, Vol.191, p.108831, Article 108831</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</citedby><cites>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33202</link.rule.ids></links><search><creatorcontrib>Cretarola, Alessandra</creatorcontrib><creatorcontrib>Figà-Talamanca, Gianna</creatorcontrib><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><title>Economics letters</title><description>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts. •Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</description><subject>Attention</subject><subject>Bitcoin</subject><subject>Bubble</subject><subject>Digital currencies</subject><subject>Economic models</subject><subject>Ethereum</subject><subject>Markov analysis</subject><subject>Prices</subject><subject>Regime-switching model</subject><subject>Stochastic models</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUE1LAzEQDaJgrf4EIeB5a7KbbLInsaV-QMGLnmM2mdUsu5uapEL_van1LgzzYOa9-XgIXVOyoITWt_0CjJ8GSIuS0CbXpKzoCZpRKapCVIKdolnm8YKKmp-jixh7QmjZCD5D78td2w6AA3y4EbCzMCXXOaOT8xN2E9Y5UjpU_VS0OoLFo7cw4M4HvHTJ-F-Sxev0CQF2I94GZwDb_aRHZ-IlOuv0EOHqD-fo7WH9unoqNi-Pz6v7TWEYKVPBrCDW5iTb2paybq2wmmSoNdPc2tpKzY1kJQWeO01DiOxMqQWXRgCX1RzdHOdug__aQUyq97sw5ZWqZEw2rJasyix-ZJngYwzQqXztqMNeUaIOZqpe_ZmpDmaqo5lZd3fUQX7h20FQ0TiYDFgXwCRlvftnwg9KEIEs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Cretarola, Alessandra</creator><creator>Figà-Talamanca, Gianna</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200601</creationdate><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><author>Cretarola, Alessandra ; Figà-Talamanca, Gianna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attention</topic><topic>Bitcoin</topic><topic>Bubble</topic><topic>Digital currencies</topic><topic>Economic models</topic><topic>Ethereum</topic><topic>Markov analysis</topic><topic>Prices</topic><topic>Regime-switching model</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cretarola, Alessandra</creatorcontrib><creatorcontrib>Figà-Talamanca, Gianna</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cretarola, Alessandra</au><au>Figà-Talamanca, Gianna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</atitle><jtitle>Economics letters</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>191</volume><spage>108831</spage><pages>108831-</pages><artnum>108831</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts. •Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2019.108831</doi></addata></record>
fulltext fulltext
identifier ISSN: 0165-1765
ispartof Economics letters, 2020-06, Vol.191, p.108831, Article 108831
issn 0165-1765
1873-7374
language eng
recordid cdi_proquest_journals_2448946843
source International Bibliography of the Social Sciences (IBSS); Elsevier
subjects Attention
Bitcoin
Bubble
Digital currencies
Economic models
Ethereum
Markov analysis
Prices
Regime-switching model
Stochastic models
title Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20regime%20identification%20in%20an%20attention-based%20model%20for%20Bitcoin%20and%20Ethereum%20price%20dynamics&rft.jtitle=Economics%20letters&rft.au=Cretarola,%20Alessandra&rft.date=2020-06-01&rft.volume=191&rft.spage=108831&rft.pages=108831-&rft.artnum=108831&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2019.108831&rft_dat=%3Cproquest_cross%3E2448946843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448946843&rft_id=info:pmid/&rfr_iscdi=true