Loading…
Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics
In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of...
Saved in:
Published in: | Economics letters 2020-06, Vol.191, p.108831, Article 108831 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583 |
container_end_page | |
container_issue | |
container_start_page | 108831 |
container_title | Economics letters |
container_volume | 191 |
creator | Cretarola, Alessandra Figà-Talamanca, Gianna |
description | In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts.
•Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes. |
doi_str_mv | 10.1016/j.econlet.2019.108831 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448946843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165176519304203</els_id><sourcerecordid>2448946843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4EIeB5a7KbbLInsaV-QMGLnmM2mdUsu5uapEL_van1LgzzYOa9-XgIXVOyoITWt_0CjJ8GSIuS0CbXpKzoCZpRKapCVIKdolnm8YKKmp-jixh7QmjZCD5D78td2w6AA3y4EbCzMCXXOaOT8xN2E9Y5UjpU_VS0OoLFo7cw4M4HvHTJ-F-Sxev0CQF2I94GZwDb_aRHZ-IlOuv0EOHqD-fo7WH9unoqNi-Pz6v7TWEYKVPBrCDW5iTb2paybq2wmmSoNdPc2tpKzY1kJQWeO01DiOxMqQWXRgCX1RzdHOdug__aQUyq97sw5ZWqZEw2rJasyix-ZJngYwzQqXztqMNeUaIOZqpe_ZmpDmaqo5lZd3fUQX7h20FQ0TiYDFgXwCRlvftnwg9KEIEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448946843</pqid></control><display><type>article</type><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><creator>Cretarola, Alessandra ; Figà-Talamanca, Gianna</creator><creatorcontrib>Cretarola, Alessandra ; Figà-Talamanca, Gianna</creatorcontrib><description>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts.
•Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</description><identifier>ISSN: 0165-1765</identifier><identifier>EISSN: 1873-7374</identifier><identifier>DOI: 10.1016/j.econlet.2019.108831</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Attention ; Bitcoin ; Bubble ; Digital currencies ; Economic models ; Ethereum ; Markov analysis ; Prices ; Regime-switching model ; Stochastic models</subject><ispartof>Economics letters, 2020-06, Vol.191, p.108831, Article 108831</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</citedby><cites>FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,33202</link.rule.ids></links><search><creatorcontrib>Cretarola, Alessandra</creatorcontrib><creatorcontrib>Figà-Talamanca, Gianna</creatorcontrib><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><title>Economics letters</title><description>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts.
•Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</description><subject>Attention</subject><subject>Bitcoin</subject><subject>Bubble</subject><subject>Digital currencies</subject><subject>Economic models</subject><subject>Ethereum</subject><subject>Markov analysis</subject><subject>Prices</subject><subject>Regime-switching model</subject><subject>Stochastic models</subject><issn>0165-1765</issn><issn>1873-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUE1LAzEQDaJgrf4EIeB5a7KbbLInsaV-QMGLnmM2mdUsu5uapEL_van1LgzzYOa9-XgIXVOyoITWt_0CjJ8GSIuS0CbXpKzoCZpRKapCVIKdolnm8YKKmp-jixh7QmjZCD5D78td2w6AA3y4EbCzMCXXOaOT8xN2E9Y5UjpU_VS0OoLFo7cw4M4HvHTJ-F-Sxev0CQF2I94GZwDb_aRHZ-IlOuv0EOHqD-fo7WH9unoqNi-Pz6v7TWEYKVPBrCDW5iTb2paybq2wmmSoNdPc2tpKzY1kJQWeO01DiOxMqQWXRgCX1RzdHOdug__aQUyq97sw5ZWqZEw2rJasyix-ZJngYwzQqXztqMNeUaIOZqpe_ZmpDmaqo5lZd3fUQX7h20FQ0TiYDFgXwCRlvftnwg9KEIEs</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Cretarola, Alessandra</creator><creator>Figà-Talamanca, Gianna</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20200601</creationdate><title>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</title><author>Cretarola, Alessandra ; Figà-Talamanca, Gianna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attention</topic><topic>Bitcoin</topic><topic>Bubble</topic><topic>Digital currencies</topic><topic>Economic models</topic><topic>Ethereum</topic><topic>Markov analysis</topic><topic>Prices</topic><topic>Regime-switching model</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cretarola, Alessandra</creatorcontrib><creatorcontrib>Figà-Talamanca, Gianna</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Economics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cretarola, Alessandra</au><au>Figà-Talamanca, Gianna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics</atitle><jtitle>Economics letters</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>191</volume><spage>108831</spage><pages>108831-</pages><artnum>108831</artnum><issn>0165-1765</issn><eissn>1873-7374</eissn><abstract>In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts.
•Introduction of an attention-based regime-switching model for cryptocurrencies.•Correlation parameter value as a tuning to define bubbles and the speed at which they boost.•Empirical outcomes provided for up to four regimes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.econlet.2019.108831</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1765 |
ispartof | Economics letters, 2020-06, Vol.191, p.108831, Article 108831 |
issn | 0165-1765 1873-7374 |
language | eng |
recordid | cdi_proquest_journals_2448946843 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier |
subjects | Attention Bitcoin Bubble Digital currencies Economic models Ethereum Markov analysis Prices Regime-switching model Stochastic models |
title | Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bubble%20regime%20identification%20in%20an%20attention-based%20model%20for%20Bitcoin%20and%20Ethereum%20price%20dynamics&rft.jtitle=Economics%20letters&rft.au=Cretarola,%20Alessandra&rft.date=2020-06-01&rft.volume=191&rft.spage=108831&rft.pages=108831-&rft.artnum=108831&rft.issn=0165-1765&rft.eissn=1873-7374&rft_id=info:doi/10.1016/j.econlet.2019.108831&rft_dat=%3Cproquest_cross%3E2448946843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-4d70ddd708b6d286bd7da06bd6a4a5dd6d8a5c8421e57da99008fc2a758c7e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448946843&rft_id=info:pmid/&rfr_iscdi=true |