Loading…

Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning

Matching person images between the daytime visible modality and night-time infrared modality (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Existing methods usually learn the multi-modality features in raw image, ignoring the image-level discrepancy. Some methods apply GAN t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2021, Vol.16, p.728-739
Main Authors: Ye, Mang, Shen, Jianbing, Shao, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633
cites cdi_FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633
container_end_page 739
container_issue
container_start_page 728
container_title IEEE transactions on information forensics and security
container_volume 16
creator Ye, Mang
Shen, Jianbing
Shao, Ling
description Matching person images between the daytime visible modality and night-time infrared modality (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Existing methods usually learn the multi-modality features in raw image, ignoring the image-level discrepancy. Some methods apply GAN technique to generate the cross-modality images, but it destroys the local structure and introduces unavoidable noise. In this paper, we propose a Homogeneous Augmented Tri-Modal (HAT) learning method for VI-ReID, where an auxiliary grayscale modality is generated from their homogeneous visible images, without additional training process. It preserves the structure information of visible images and approximates the image style of infrared modality. Learning with the grayscale visible images enforces the network to mine structure relations across multiple modalities, making it robust to color variations. Specifically, we solve the tri-modal feature learning from both multi-modal classification and multi-view retrieval perspectives. For multi-modal classification, we learn a multi-modality sharing identity classifier with a parameter-sharing network, trained with a homogeneous and heterogeneous identification loss. For multi-view retrieval, we develop a weighted tri-directional ranking loss to optimize the relative distance across multiple modalities. Incorporated with two invariant regularizers, HAT simultaneously minimizes multiple modality variations. In-depth analysis demonstrates the homogeneous grayscale augmentation significantly outperforms the current state-of-the-art by a large margin.
doi_str_mv 10.1109/TIFS.2020.3001665
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2449308216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9115075</ieee_id><sourcerecordid>2449308216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKs_QLwseN46k2yS3WMp1hYqitZeQ7qblJR2U5NdwX9vSqWnGYb33jw-Qu4RRohQPS3n088RBQojBoBC8AsyQM5FLoDi5XlHdk1uYtwCFAWKckBWKxfdemfyeWuDDqbJ3k2Ivs0-0qkxbeesq3Xn0uXH6Wzm935jWuP7mI37zT4JkmUZXP7qG73LFkaH1rWbW3Jl9S6au_85JF_T5-Vkli_eXuaT8SKvWYFdXgKXvDaVRJC6Qi05K8o1rWhRWNk0NcqGSltQzkqqZWkkcqBWizW31IJgbEgeT7mH4L97Ezu19X1o00uVMioGJUWRVHhS1cHHGIxVh-D2OvwqBHXEp4741BGf-seXPA8njzPGnPUVpgap5R8pWGpG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449308216</pqid></control><display><type>article</type><title>Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ye, Mang ; Shen, Jianbing ; Shao, Ling</creator><creatorcontrib>Ye, Mang ; Shen, Jianbing ; Shao, Ling</creatorcontrib><description>Matching person images between the daytime visible modality and night-time infrared modality (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Existing methods usually learn the multi-modality features in raw image, ignoring the image-level discrepancy. Some methods apply GAN technique to generate the cross-modality images, but it destroys the local structure and introduces unavoidable noise. In this paper, we propose a Homogeneous Augmented Tri-Modal (HAT) learning method for VI-ReID, where an auxiliary grayscale modality is generated from their homogeneous visible images, without additional training process. It preserves the structure information of visible images and approximates the image style of infrared modality. Learning with the grayscale visible images enforces the network to mine structure relations across multiple modalities, making it robust to color variations. Specifically, we solve the tri-modal feature learning from both multi-modal classification and multi-view retrieval perspectives. For multi-modal classification, we learn a multi-modality sharing identity classifier with a parameter-sharing network, trained with a homogeneous and heterogeneous identification loss. For multi-view retrieval, we develop a weighted tri-directional ranking loss to optimize the relative distance across multiple modalities. Incorporated with two invariant regularizers, HAT simultaneously minimizes multiple modality variations. In-depth analysis demonstrates the homogeneous grayscale augmentation significantly outperforms the current state-of-the-art by a large margin.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.3001665</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Classification ; Face recognition ; Gray scale ; Image color analysis ; Infrared imagery ; Machine learning ; multi-modality ; Parameter identification ; Person re-identification (Re-ID) ; ranking ; Retrieval ; Surveillance ; Task analysis ; Training</subject><ispartof>IEEE transactions on information forensics and security, 2021, Vol.16, p.728-739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633</citedby><cites>FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633</cites><orcidid>0000-0002-8264-6117 ; 0000-0003-3989-7655 ; 0000-0003-2656-3082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9115075$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><title>Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Matching person images between the daytime visible modality and night-time infrared modality (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Existing methods usually learn the multi-modality features in raw image, ignoring the image-level discrepancy. Some methods apply GAN technique to generate the cross-modality images, but it destroys the local structure and introduces unavoidable noise. In this paper, we propose a Homogeneous Augmented Tri-Modal (HAT) learning method for VI-ReID, where an auxiliary grayscale modality is generated from their homogeneous visible images, without additional training process. It preserves the structure information of visible images and approximates the image style of infrared modality. Learning with the grayscale visible images enforces the network to mine structure relations across multiple modalities, making it robust to color variations. Specifically, we solve the tri-modal feature learning from both multi-modal classification and multi-view retrieval perspectives. For multi-modal classification, we learn a multi-modality sharing identity classifier with a parameter-sharing network, trained with a homogeneous and heterogeneous identification loss. For multi-view retrieval, we develop a weighted tri-directional ranking loss to optimize the relative distance across multiple modalities. Incorporated with two invariant regularizers, HAT simultaneously minimizes multiple modality variations. In-depth analysis demonstrates the homogeneous grayscale augmentation significantly outperforms the current state-of-the-art by a large margin.</description><subject>Cameras</subject><subject>Classification</subject><subject>Face recognition</subject><subject>Gray scale</subject><subject>Image color analysis</subject><subject>Infrared imagery</subject><subject>Machine learning</subject><subject>multi-modality</subject><subject>Parameter identification</subject><subject>Person re-identification (Re-ID)</subject><subject>ranking</subject><subject>Retrieval</subject><subject>Surveillance</subject><subject>Task analysis</subject><subject>Training</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKs_QLwseN46k2yS3WMp1hYqitZeQ7qblJR2U5NdwX9vSqWnGYb33jw-Qu4RRohQPS3n088RBQojBoBC8AsyQM5FLoDi5XlHdk1uYtwCFAWKckBWKxfdemfyeWuDDqbJ3k2Ivs0-0qkxbeesq3Xn0uXH6Wzm935jWuP7mI37zT4JkmUZXP7qG73LFkaH1rWbW3Jl9S6au_85JF_T5-Vkli_eXuaT8SKvWYFdXgKXvDaVRJC6Qi05K8o1rWhRWNk0NcqGSltQzkqqZWkkcqBWizW31IJgbEgeT7mH4L97Ezu19X1o00uVMioGJUWRVHhS1cHHGIxVh-D2OvwqBHXEp4741BGf-seXPA8njzPGnPUVpgap5R8pWGpG</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ye, Mang</creator><creator>Shen, Jianbing</creator><creator>Shao, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid></search><sort><creationdate>2021</creationdate><title>Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning</title><author>Ye, Mang ; Shen, Jianbing ; Shao, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Classification</topic><topic>Face recognition</topic><topic>Gray scale</topic><topic>Image color analysis</topic><topic>Infrared imagery</topic><topic>Machine learning</topic><topic>multi-modality</topic><topic>Parameter identification</topic><topic>Person re-identification (Re-ID)</topic><topic>ranking</topic><topic>Retrieval</topic><topic>Surveillance</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><creatorcontrib>Shao, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Mang</au><au>Shen, Jianbing</au><au>Shao, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2021</date><risdate>2021</risdate><volume>16</volume><spage>728</spage><epage>739</epage><pages>728-739</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Matching person images between the daytime visible modality and night-time infrared modality (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Existing methods usually learn the multi-modality features in raw image, ignoring the image-level discrepancy. Some methods apply GAN technique to generate the cross-modality images, but it destroys the local structure and introduces unavoidable noise. In this paper, we propose a Homogeneous Augmented Tri-Modal (HAT) learning method for VI-ReID, where an auxiliary grayscale modality is generated from their homogeneous visible images, without additional training process. It preserves the structure information of visible images and approximates the image style of infrared modality. Learning with the grayscale visible images enforces the network to mine structure relations across multiple modalities, making it robust to color variations. Specifically, we solve the tri-modal feature learning from both multi-modal classification and multi-view retrieval perspectives. For multi-modal classification, we learn a multi-modality sharing identity classifier with a parameter-sharing network, trained with a homogeneous and heterogeneous identification loss. For multi-view retrieval, we develop a weighted tri-directional ranking loss to optimize the relative distance across multiple modalities. Incorporated with two invariant regularizers, HAT simultaneously minimizes multiple modality variations. In-depth analysis demonstrates the homogeneous grayscale augmentation significantly outperforms the current state-of-the-art by a large margin.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.3001665</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8264-6117</orcidid><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2021, Vol.16, p.728-739
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_2449308216
source IEEE Electronic Library (IEL) Journals
subjects Cameras
Classification
Face recognition
Gray scale
Image color analysis
Infrared imagery
Machine learning
multi-modality
Parameter identification
Person re-identification (Re-ID)
ranking
Retrieval
Surveillance
Task analysis
Training
title Visible-Infrared Person Re-Identification via Homogeneous Augmented Tri-Modal Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-Infrared%20Person%20Re-Identification%20via%20Homogeneous%20Augmented%20Tri-Modal%20Learning&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Ye,%20Mang&rft.date=2021&rft.volume=16&rft.spage=728&rft.epage=739&rft.pages=728-739&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.3001665&rft_dat=%3Cproquest_ieee_%3E2449308216%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-80575ce97107a91a75348b29244f7ddc17d27f425382a78e71502fa6b5f2f0633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449308216&rft_id=info:pmid/&rft_ieee_id=9115075&rfr_iscdi=true